首页 | 本学科首页   官方微博 | 高级检索  
     

脉冲耦合神经网络模型参数估计及其图像分割
引用本文:胡芳,周冬明,聂仁灿,赵东风. 脉冲耦合神经网络模型参数估计及其图像分割[J]. 云南大学学报(自然科学版), 2010, 32(6): 652-656
作者姓名:胡芳  周冬明  聂仁灿  赵东风
作者单位:云南大学 通信工程系, 云南 昆明 650091
摘    要:利用小波分析对图像进行多层分解,然后,用分解的低频系数重构图像作为模型链接权参数W的估计,再用一种最佳阈值方法估计阈值θ,最后用最大相关准则确定网络计算的迭代次数N,成功实现了图像的自动分割.实验仿真表明,该方法在模型参数自动估计的基础上避免了PCNN对图像的过平滑作用,分割图像保留了良好的轮廓和更多的细节.

关 键 词:脉冲耦合神经网络  参数估计  小波分析  最大相关准则
收稿时间:2010-04-21

Pulse coupled neural network model parameter estimationand image segmentation
HU Fang,ZHOU Dong-ming,NIE Ren-can,ZHAO Dong-feng. Pulse coupled neural network model parameter estimationand image segmentation[J]. Journal of Yunnan University(Natural Sciences), 2010, 32(6): 652-656
Authors:HU Fang  ZHOU Dong-ming  NIE Ren-can  ZHAO Dong-feng
Affiliation:Department of Communication Engineering, Yunnan University, Kunming 650091, China
Abstract:In this paper,the wavelet analysis was applied to multi-layer decomposition of image.Then, it was linked to the right as a model parameter estimates of W with decomposition of the low-frequency coefficients of the reconstructed image.It was estimated an optimal threshold value of the threshold θ.The final maximum correlation criterion was used to determine network iteration times N.A successful automatic image segmentation was obtained.Experimental results showed that the method automatically estimated model parameters based on PCNN image to avoid over-smoothing effect,segmentation images retained a good profile and more details.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《云南大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《云南大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号