首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子滤波的视觉目标跟踪
引用本文:赵康,王正勇,何小海,郑新波,田刚. 基于改进粒子滤波的视觉目标跟踪[J]. 四川大学学报(自然科学版), 2019, 56(5): 0875-882
作者姓名:赵康  王正勇  何小海  郑新波  田刚
作者单位:四川大学电子信息学院,四川大学电子信息学院,四川大学电子信息学院,东莞前沿技术研究院,新疆油田公司
基金项目:国家自然科学基金,省自然科学基金,市自然科学基金
摘    要:针对目标跟踪算法在精度和鲁棒性上的要求,提出一种基于改进粒子滤波的视觉目标跟踪算法.首先,建立多种特征来描述目标外观模型,并对各特征分量的加权系数进行自适应调节;然后,利用分类重采样方法解决原始重采样方法中的粒子退化和匮乏问题;最后,提出一种新的模板更新机制,自适应选取运动模板或原始模板.实验结果表明,改进后的算法在具有挑战的跟踪视频序列上实验,具有良好的跟踪精度和鲁棒性,能够应对视频图像分辨率不高、目标转动变化、部分遮挡等复杂条件.

关 键 词:目标跟踪;重采样;自适应融合;模板更新
收稿时间:2018-09-10
修稿时间:2019-02-12

Visual object tracking based on improved particle filter
ZHAO Kang,WANG Zheng-Yong,HE Xiao-Hai,ZHENG Xin-Bo and TIAN Gang. Visual object tracking based on improved particle filter[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(5): 0875-882
Authors:ZHAO Kang  WANG Zheng-Yong  HE Xiao-Hai  ZHENG Xin-Bo  TIAN Gang
Affiliation:College of Electronics and Information Engineering, Sichuan University,College of Electronics and Information Engineering, Sichuan University,Dongguan Institute of Advanced Technology,Xinjiang Oilfield Company
Abstract:Aiming at the accuracy and robustness requirements of target tracking algorithm, we propose a visual target tracking algorithm based on improved particle filter. First, the target appearance model is described by establishing a variety of features, and the weighting coefficients of each feature component are adaptively adjusted. Then, we exploit the classification resampling method to solve the problem of particle degradation and scarcity in the original resampling method. Finally, a new template updating mechanism is proposed, which can adaptively select moving templates or original templates. The experimental results demonstrate that the improved algorithm has good tracking accuracy and robustness on the challenging tracking video sequences, and it can cope with the complex conditions such as low resolution of video images, rotation change of target, partial occlusion and so on.
Keywords:target tracking  resampling   adaptive fusion   template update
本文献已被 CNKI 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号