首页 | 本学科首页   官方微博 | 高级检索  
     

关于子块为矩阵多项式的矩阵的秩
引用本文:刘英,王路群,刘冬丽. 关于子块为矩阵多项式的矩阵的秩[J]. 高师理科学刊, 2010, 30(5): 16-18. DOI: 10.3969/j.issn.1007-9831.2010.05.006
作者姓名:刘英  王路群  刘冬丽
作者单位:哈尔滨师范大学恒星学院信息科学系,黑龙江哈尔滨150025
基金项目:黑龙江省高教学会"十一五"规划项目
摘    要:
为了进一步整合线性代数的内容,利用分块矩阵与λ-多项式理论对子块为矩阵多项式的矩阵的秩进行系统的论述.得到的主要结论:设B(λ)∈F[λ]s×t,A∈F n×n,则rank(B(A))=rank(h1(A))++rank(hr(A)),其中:r=rank(B(λ));h1(λ),,hr(λ)∈F[λ]为任意非零多项式,且h1(λ),,hr(λ)的标准分解式中不可约因子的方幂构成B(λ)的全部初等因子.

关 键 词:矩阵的秩  λ-矩阵  不变因子  初等因子

The rank of partitioned matrices with polynomial matrix sub-blocks
LIU Ying,WANG Lu-qun,LIU Dong-li. The rank of partitioned matrices with polynomial matrix sub-blocks[J]. Journal of Science of Teachers'College and University, 2010, 30(5): 16-18. DOI: 10.3969/j.issn.1007-9831.2010.05.006
Authors:LIU Ying  WANG Lu-qun  LIU Dong-li
Affiliation:(Department of Information Science,Star College,Harbin Normal University,Harbin 150025,China)
Abstract:
In order to further integrate the content of linear algebra,revealed the rank of partitioned λ-matrices,in which every sub-block is matrix polynomial,using partitioned matrix andλ-polynomial theory.The main conclusion is that ifB(λ)∈F [λ ] s ×t,A∈F n ×n,thenrank(B(A))=rank(h1(A))+ +rank(hr(A)).Where r=rank(B(λ)),h1(λ),,hr(λ) ∈ F [λ] are any non-zero polynomial with the following properties that the powers of irreducible divisors in the canonical form of h1(λ),,hr(λ) constitute all the elementary divisors ofB(λ).
Keywords:rank of matrix  λ-matrix  invariant factor  elementary divisor
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号