首页 | 本学科首页   官方微博 | 高级检索  
     

基于自动提取特征点的三维人脸表情识别
引用本文:岳雷,沈庭芝. 基于自动提取特征点的三维人脸表情识别[J]. 北京理工大学学报, 2016, 36(5): 508-513. DOI: 10.15918/j.tbit1001-0645.2016.05.013
作者姓名:岳雷  沈庭芝
作者单位:北京理工大学信息与电子学院,北京,100081;北京理工大学信息与电子学院,北京,100081
基金项目:国家自然科学基金资助项目(60772066)
摘    要:为实现完全自动的人脸表情识别,提出一种基于自动提取三维及二维特征点的三维人脸表情识别算法.该算法采用在三维点云、深度图像以及三维点云对应的二维特征图像上分别自动获得特定特征点,并将非点云上获得的特征点映射回三维点云以获得全部需用特征点的方法.基于这些自动获取的特征点得到三维欧氏距离组成25维特征向量以待分类.通过运用支持向量机作为分类器,取得了平均87.1%的6种基本表情的分类结果,其中惊讶、开心表情的分类结果分别达到了92.3%和91.7%. 

关 键 词:三维表情识别  三维特征点  三维欧氏距离  支持向量机
收稿时间:2014-03-05

3D Expression Recognition Based on Automatically Detected Facial Points
YUE Lei and SHEN Ting-zhi. 3D Expression Recognition Based on Automatically Detected Facial Points[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2016, 36(5): 508-513. DOI: 10.15918/j.tbit1001-0645.2016.05.013
Authors:YUE Lei and SHEN Ting-zhi
Affiliation:School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Abstract:In order to deal with automatic facial expression recognition task, a 3D facial expression recognition algorithm was proposed based on automatically detected fiducial points from 3D mesh models, range images and the corresponding 2D feature images. First, the fiducial points were automatically detected on the 3D mesh models, range images and the corresponding 2D feature images. And some fiducial points got from non-mesh models were mapped back to 3D mesh models to get full fiducial points. Then, Euclidian distances between these fiducial points were extracted as feature to feed the SVM classifier. Compared with two state-of-the-art algorithms, the classification results show that the fully automatic algorithm can achieve highly competitive classification rate. The average recognition rate was 87.1%, especially the recognition rate for surprise and happiness expression were 92.3% and 91.7% respectively.
Keywords:3D expression recognition  3D fiducial point  3D Euclidian distance  support vector machine
本文献已被 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号