摘 要: | 为了提高细胞核图像分割的精确性和鲁棒性,提出一种基于改进卷积神经网络的多尺度多层次双注意力图像分割算法.使用SE(Squeeze-and-Excitation)和改进的条纹池化SP(Strip Pooling)整合通道和空间上的信息权重代替传统U-Net编码的最后一层操作以提升对有用信息的关注.在级联路径,提出轻量级的Inception模块,在增加感受野的同时减少参数以获得多尺度的特征.编码和解码信息拼接之前结合注意力机制提高分割精度,使用残差块作为解码部分的基础层,并增加一个侧边输出结构提供多层次的信息.每一层的损失采用阶梯的方式相加,指导监督多层次模型更好的训练,提高模型准确率.在细胞分割数据集上的实验结果表明,该方法的交并比和相似性系数的精度分别达到85.72%和92.02%,和其他网络相比,分割效果更好.
|