摘 要: | 股票价格预测是金融行业中的一个重要研究内容,能够更准确地分析股票价格走势对于投资机构至关重要.目前,关于自动化预测股票价格发展的研究工作相对较少,还有许多问题需要解决.针对传统股票预测方法中视角单一、无法充分考虑数据的各特征重要度的问题,提出一种基于多视角股票特征的股票预测方法,通过计算股票数据的Ma,Macd,Kdj,Boll特征指标,训练每个指标下的弱学习器,并进行多个弱学习器的集成学习,最终用于预测股票价格走势.使用美国股票新闻数据集进行验证.结果表明,基于多视角股票特征的股票预测方法预测得到的股票价格与实际价格之间的平均误差与均方误差分别为1.9321和0.0581,优于传统的基于单一指标的股票预测结果 .
|