首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO结合SVM的肉品新鲜度判别方法
引用本文:刘静,管骁. 基于PSO结合SVM的肉品新鲜度判别方法[J]. 江苏大学学报(自然科学版), 2012, 33(3): 288-292,321
作者姓名:刘静  管骁
作者单位:1. 上海海事大学信息工程学院,上海,200135
2. 上海理工大学医疗器械与食品学院,上海,200093
基金项目:国家自然科学基金资助项目,上海市晨光计划项目
摘    要:通过测定4种肉样品(猪肉、牛肉、羊肉及虾)的挥发性盐基氮(TVB-N)、细菌总数、pH值和感官评分等指标数据,运用支持向量机方法对以上数据进行综合训练得到数学模型,并对SVM模型参数采用粒子群优化算法进行优化,拟实现肉品新鲜度的快速准确分类.结果表明:仅采用某一项理化指标对肉品新鲜度进行判定误判率较高,而采用默认参数条件下的以RBF为核函数的SVM模型能一定程度上提高判别准确率,但利用PSO优化的SVM模型能将肉品新鲜度判别准确率提高到100%,且模型还具有极好的稳定性.

关 键 词:肉品新鲜度  判别  粒子群优化算法  支持向量机  优化

SVM classification method of meat freshness based on PSO
Liu Jing , Guan Xiao. SVM classification method of meat freshness based on PSO[J]. Journal of Jiangsu University:Natural Science Edition, 2012, 33(3): 288-292,321
Authors:Liu Jing    Guan Xiao
Affiliation:1.College of Information Engineering,Shanghai Maritime University,Shanghai 200135,China;2.School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
Abstract:TVB-N content,total bacterial count,pH value and sensory scores of four meat samples of pork,beef,mutton and shrimp were determined.According to support vector machine(SVM) method,the experimental data were trained to optimize the model parameters by particle swarm optimization(PSO).Based on the proposed method,the rapid and correct classification of meat freshness was rea-lized.The experimental results show that it is difficult to obtain ideal classification accuracy by any single physicochemical or sensory property.The SVM model with RBF kernel function and default parameters can improve classification accuracy to some extent.The SVM model optimized by PSO can improve classification accuracy of meat freshness to 100% with high stability.
Keywords:meat freshness  classification  particle swarm optimization  support vector machine  optimize
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号