首页 | 本学科首页   官方微博 | 高级检索  
     

多阶段边缘检测算法
引用本文:片兆宇,高立群,郭丽,王坤. 多阶段边缘检测算法[J]. 东北大学学报(自然科学版), 2008, 29(5): 637-640. DOI: -
作者姓名:片兆宇  高立群  郭丽  王坤
作者单位:东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004;东北大学信息科学与工程学院,辽宁沈阳,110004
摘    要:提出一种新颖的图像边缘检测算法,包括边缘检测和边缘增强两个阶段.在边缘检测阶段,新的检测算子不仅可以克服传统算子对边缘拐点、终点的漏检现象,还可以有效地去除噪声,从而更加精确地定位边缘.在边缘增强阶段,引入Hopfield神经网络,通过迭代计算网络优化的能量函数,逐步地弥补缺失边缘、消除假边缘,达到边缘增强的目的.最后针对不同类型图片进行边缘检测,得到较好的结果,证明了该算法的可行性.

关 键 词:边缘  边缘检测  边缘增强  Hopfield神经网络  能量函数
文章编号:1005-3026(2008)05-0637-04
修稿时间:2007-05-14

An Edge Detection Algorithm Based on Multi-phase Processing
PIAN Zhao-yu,GAO Li-qun,GUO Li,WANG Kun. An Edge Detection Algorithm Based on Multi-phase Processing[J]. Journal of Northeastern University(Natural Science), 2008, 29(5): 637-640. DOI: -
Authors:PIAN Zhao-yu  GAO Li-qun  GUO Li  WANG Kun
Affiliation:(1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
Abstract:A novel algorithm is presented for image edge detection and enhancement.During the edge detection phase,a new edge detection operator is employed to label exactly the edge because it can get rid of the conventional operators' miss-detection including the inflection and end points of edges and eliminate efficiently noise.During the edge enhancement phase,the Hopfield neural network is introduced to make up for missed edges and clear out false edges step by step via computing the energy function iteratively for network optimization.In this way the edge detection was done for the images of different types and the results are proved preferable to conventional detection procedure,thus verifying the feasibility of the algorithm.
Keywords:image edge  edge detection  edge enhancement  Hopfield neural network  energy function
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号