首页 | 本学科首页   官方微博 | 高级检索  
     


The proteasome antechamber maintains substrates in an unfolded state
Authors:Ruschak Amy M  Religa Tomasz L  Breuer Sarah  Witt Susanne  Kay Lewis E
Affiliation:Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.
Abstract:
Eukaryotes and archaea use a protease called the proteasome that has an integral role in maintaining cellular function through the selective degradation of proteins. Proteolysis occurs in a barrel-shaped 20S core particle, which in Thermoplasma acidophilum is built from four stacked homoheptameric rings of subunits, α and β, arranged α(7)β(7)β(7)α(7) (ref. 5). These rings form three interconnected cavities, including a pair of antechambers (formed by α(7)β(7)) through which substrates are passed before degradation and a catalytic chamber (β(7)β(7)) where the peptide-bond hydrolysis reaction occurs. Although it is clear that substrates must be unfolded to enter through narrow, gated passageways (13?? in diameter) located on the α-rings, the structural and dynamical properties of substrates inside the proteasome antechamber remain unclear. Confinement in the antechamber might be expected to promote folding and thus impede proteolysis. Here we investigate the folding, stability and dynamics of three small protein substrates in the antechamber by methyl transverse-relaxation-optimized NMR spectroscopy. We show that these substrates interact actively with the antechamber walls and have drastically altered kinetic and equilibrium properties that maintain them in unstructured states so as to be accessible for hydrolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号