首页 | 本学科首页   官方微博 | 高级检索  
     

基于经验模态分解的齿轮箱故障特征提取
引用本文:鲍志鹏. 基于经验模态分解的齿轮箱故障特征提取[J]. 上海应用技术学院学报:自然科学版, 2014, 14(4): 314-318
作者姓名:鲍志鹏
作者单位:上海应用技术学院电子与电气工程学院,上海201418
摘    要:
利用小波去噪阈值法对齿轮箱故障振动信号进行去噪,将经验模态分解(EMD)和快速傅里叶变换(FFT)相结合对齿轮箱故障进行特征提取,此方法适合于对非线性非稳态信号进行自适应的分析.利用小波阈值去噪方法对原始信号进行预处理,将去噪后的信号进行经验模态分解,得到一定数量的本征模态函数(IMF)分量,选取特定的IMF进行FFT,得到相应的功率谱,从而达到提取齿轮箱故障特征频率的目的.对齿轮箱故障信号进行分析,结果表明该方法能够有效地识别出齿轮箱故障特征频率.

关 键 词:小波阈值去噪  经验模态分解  快速傅里叶变换  故障诊断

Gearbox Fault Feature Extraction Based on Empirical Mode Decomposition
BAO Zhi-peng. Gearbox Fault Feature Extraction Based on Empirical Mode Decomposition[J]. Journal of Shanghai Institute of Technology: Natural Science, 2014, 14(4): 314-318
Authors:BAO Zhi-peng
Affiliation:(School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China)
Abstract:
Wavelet threshold method was used to de-noise gearbox fault signal,the empirical mode decomposition(EMD)was associated with fast Fourier transform(FFT)to extract gearbox fault feature,and this method was suitable for analyzing non-linear and non-stationary signal adaptively.Firstly,by using wavelet threshold to preprocess the original signal,then the de-noised signal was resolved by empirical mode decomposition to get a certain number of intrinsic mode function(IMF)component and the appropriate power spectrum by selecting a specific IMF transformed by FFT,finally,thereby the aim of extracting gearbox fault characteristic frequency was attained.Through analyzing gearbox fault signal,the results showed that the method could effectively identify the gearbox fault characteristic frequency.
Keywords:wavelet threshold de-noising  empirical mode decomposition(EMD)  fast Fourier transform(FFT)  fault diagnosis
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《上海应用技术学院学报:自然科学版》浏览原始摘要信息
点击此处可从《上海应用技术学院学报:自然科学版》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号