摘 要: | 高分辨率遥感影像在实际应用中得到广泛使用。高分影像语义分割方法的研究具有重要实际应用价值。近来基于深度卷积网络的遥感影像标注方法表现出了比传统方法更为优越的性能;然而由于其基于固定感受野大小的上下文信息获取方法没有显式利用像素间约束关系,导致同一地物内部语义标注结果不一致。基于同一区域内部像素属于相同类别概率较大的假定,试图引入图像区域内部语义标注一致性约束,以改善现有深度卷积神经网络描述上下文信息的能力。在现有全卷积网络模型基础上,利用卷积神经网络最后一层特征,引入一个表示区域内部像素特征一致性的损失函数;将该损失函数与softmax损失函数进行联合训练,得到网络模型参数。在ISPRS(国际摄影测量与遥感学会)的Vaihingen 2D语义标注数据集上,对提出的方法进行了实验验证,实验结果表明所提方法在大多数类别上取得了较现有卷积神经网络模型更优的分类结果,总体准确率达85.18%。提出的引入区域内部像素标记一致性的全卷积网络模型,可以有效捕捉区域内部像素特征一致性的上下文信息,能有效纠正全卷积网络模型在区域内部像素分类中的冲突,获得区域一致较好的分类结果,从而改善图像的语义标注效果。
|