首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于S变换及样本熵组合特征的癫痫脑电信号分类方法
引用本文:汤伟,陶倩,陈景霞,税宇阳,刘思洋. 一种基于S变换及样本熵组合特征的癫痫脑电信号分类方法[J]. 科学技术与工程, 2018, 18(27)
作者姓名:汤伟  陶倩  陈景霞  税宇阳  刘思洋
作者单位:陕西科技大学电气与信息工程学院;陕西科技大学机电工程学院
基金项目:陕西省重点科技创新团队计划项目(项目编号:2014KCT-15)
摘    要:癫痫脑电信号的自动检测对癫痫的临床诊断与治疗具有重要意义。为了解决脑电信号采用单一特征识别率不高的问题,提出了一种基于S变换与样本熵组合的癫痫脑电信号自动识别方法。首先对原始信号进行S变换;然后对变换后脑电信号各节律的幅值分别求其波动指数,将其与原始信号计算得到的样本熵组合为特征向量;最后采用支持向量机进行癫痫脑电信号自动识别。实验结果表明:方法的分类准确率明显提高,准确率可达到98.94%。

关 键 词:癫痫 脑电图 样本熵 S变换
收稿时间:2018-05-01
修稿时间:2018-06-20

An Epileptic EEG Signal Classification Based on Combination of S Transform and Sample Entropy
Tang Wei,Tao Qian,Chen Jingxi,Shui Yuyang and Liu Siyang. An Epileptic EEG Signal Classification Based on Combination of S Transform and Sample Entropy[J]. Science Technology and Engineering, 2018, 18(27)
Authors:Tang Wei  Tao Qian  Chen Jingxi  Shui Yuyang  Liu Siyang
Abstract:Automatic detection and classification of epileptic EEG(electroencephalogram) signals have been a significance method for the clinical diagnosis and treatment of epilepsy. In order to solve the problem that the recognition accuracy is not high by using the single feature of EEG signals, a method of automatic discrimination of epileptic EEG signals based on Combination of S transform and sample entropy is proposed. Firstly, the original signals were decomposed by S transform, and then the fluctuation index of amplitude of each rhythm was calculated and combined the sample entropy of EEG signals into feature vectors. Finally, put the feature vectors into a support vector machine (SVM) to automatically detected the epileptic EEG from EEG recordings.Experimental results shows that the proposed methods could achieve a great classification accuracy of 98.94%.
Keywords:epilepsy   electroencephalogram  sample entropy  S-transform
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号