首页 | 本学科首页   官方微博 | 高级检索  
     

复杂环境中一种基于深度学习的异常检测方法
引用本文:邱 鹏,邓秀慧,霍瑛. 复杂环境中一种基于深度学习的异常检测方法[J]. 科学技术与工程, 2018, 18(10)
作者姓名:邱 鹏  邓秀慧  霍瑛
作者单位:南京工程学院计算机工程学院
基金项目:南京工程学院校级科研青年基金项目(QKJA201603)和南京工程学院引进人才科研启动(YKJ201614)资助
摘    要:为了解决复杂环境中异常检测的问题,提出一种基于深度学习的检测方法。首先,通过引入(you only look once,YOLO)检测,将卷积神经网络回归法提取的物体时空特征,输入到长短期记忆模型(LSTM),追踪复杂环境中个体的运动轨迹。然后,评估相邻个体间运动轨迹的依赖性。最后,采用编码-解码框架训练LSTM模型,预测物体未来的运动轨迹;根据物体未来运动轨迹的异常概率,最终完成异常检测。实验结果表明,解决了复杂环境中运动物体间的相互干扰问题;在时间和空间鲁棒性评估上,优于其他轨迹追踪的方法,从而证明了本方法的有效性和可行性。

关 键 词:深度学习  卷积神经网络 循环神经网络  长短期记忆模型 编码-解码框架
收稿时间:2017-10-10
修稿时间:2017-12-06

Anomaly Detection based on Deep Learning in Complicated Circumstances
Qiu Peng,Deng Xiu-hui and Huo Ying. Anomaly Detection based on Deep Learning in Complicated Circumstances[J]. Science Technology and Engineering, 2018, 18(10)
Authors:Qiu Peng  Deng Xiu-hui  Huo Ying
Affiliation:School of Computer Engineering, Nanjing Institute of Technology,School of Computer Engineering, Nanjing Institute of Technology,School of Computer Engineering, Nanjing Institute of Technology
Abstract:To solve the problem of anomaly detection in complicated circumstances, A method based on deep learning has been proposed. First of all, You Only Look Once (YOLO) detection is chose as a regression problem, spatio-temporal features of each object extracted by Convolutional Neural Network (CNN) are fed into Long Short Term Memory (LSTM) model, which used to track each individual. Secondly, motion relation of coherent is evaluated between individuals. Finally, LSTM encoder-decoder is adopted to predict the future tracklet of each object, anomaly detection will be done by the abnormal probability of future tracklet. Experiments showed that the interference problem that exists among motional objects is solved by proposed method in complicated circumstances. It is better than other trajectory tracking techniques whatever on temporal or spatial robustness. The proposed method is demonstrated effectively and feasibly.
Keywords:deep learning   convolutional neural network   recurrent neural network   long short term memory   encoder-decoder
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号