首页 | 本学科首页   官方微博 | 高级检索  
     

基于演化聚类的社交媒体舆情分析方法综述
引用本文:黄晓辉,王 成,何 雄,曾 辉. 基于演化聚类的社交媒体舆情分析方法综述[J]. 科学技术与工程, 2018, 18(29)
作者姓名:黄晓辉  王 成  何 雄  曾 辉
作者单位:华东交通大学信息工程学院
基金项目:江西省社会科学“十二五”(2015年)规划项目(15XW12);国家自然科学基金(61562027);江西省教育厅项目(GJJ170413,GG170379)
摘    要:当前,社交媒体已经成为人们发布和获取信息的最主要渠道之一。由于大量用户的参与,社交媒体平台上已累计了海量的舆情数据,并且还在以指数级增加。如何发现和跟踪社交媒体中舆情变化是当前数据挖掘领域研究的热点问题之一。基于演化聚类的方法是分析社交媒体舆情的一类主要方法。主要从主题模型和矩阵/张量分解模型两方面来总结当前基于演化聚类的舆情分析方法,并且分析这两类方法的优缺点;最后对下一步研究进行了展望。

关 键 词:社交媒体  演化聚类 张量分解  主题模型
收稿时间:2018-05-26
修稿时间:2018-07-16

A survey of analyzing public opinion methods based on evolution clustering
Huang Xiaohui,Wang Cheng,He Xiong and Zeng Hui. A survey of analyzing public opinion methods based on evolution clustering[J]. Science Technology and Engineering, 2018, 18(29)
Authors:Huang Xiaohui  Wang Cheng  He Xiong  Zeng Hui
Affiliation:School of Information Engineering, East China Jiaotong University, Nanchang Jiangxi Province 330013, China,,,
Abstract:Currently, the social media platforms have become one of the main channels for publishing and obtaining information for most people. Since a great quantity of users, the platforms have accumulated a large number of social media data and the data are increasing exponentially. Detecting and tracking the trend of public opinions in social media is a researching hotspot in data mining field. Evolutionary clustering is a type of analyzing public opinion methods. In this paper, we summarize the existing evolutionary clustering methods for analyzing public opinion from two aspects: topic model and matrix/tensor factorization based methods. And, the advantages and disadvantages of two types of methods are discussed. At last, we conclude this paper and give the prospect of next researches.
Keywords:social  media evolutionary  clustering tensor  factorization topic  model
本文献已被 CNKI 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号