首页 | 本学科首页   官方微博 | 高级检索  
     


Constructal entransy dissipation rate minimization for heat conduction based on a tapered element
Authors:QingHua Xiao  LinGen Chen  FengRui Sun
Affiliation:College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China
Abstract:Based on constructal theory, the structure of a tapered element and high-conductivity link is optimized by taking the minimization of the entransy dissipation rate as the optimization objective. The results show that the mean temperature difference of the heat transfer cannot always decrease when the internal complexity of the control-volume increases. There exists an optimal constructal order leading to the minimum mean temperature difference for heat transfer. The thermal current density in high-conductivity links with variable shapes does not linearly depend on the length. Therefore, the optimized constructs based on the minimization of the entransy dissipation rate are different from those based on the minimization of the maximum temperature difference. Compared with the construct based on the minimization of the maximum temperature difference, the construct based on the minimization of the entransy dissipation rate can reduce the mean temperature difference, and improve the heat transfer performance significantly. Because entransy describes the heat transfer ability more suitably, various constructal problems in heat conduction may be addressed more effectively using this basis.
Keywords:constructal theory   entransy dissipation rate   volume-to-point heat conduction   generalized thermodynamic optimization
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号