首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进PSO的智能车辆转向自适应PID控制
引用本文:焦俊,陈无畏,李绍稳,王继先. 基于改进PSO的智能车辆转向自适应PID控制[J]. 安徽大学学报(自然科学版), 2008, 32(6)
作者姓名:焦俊  陈无畏  李绍稳  王继先
作者单位:1. 安徽农业大学,信息与计算机学院,安徽,合肥,230036;合肥工业大学,机械与汽车学院,安徽,合肥,230009
2. 合肥工业大学,机械与汽车学院,安徽,合肥,230009
3. 安徽农业大学,信息与计算机学院,安徽,合肥,230036
4. 安徽农业大学,工学院,安徽,合肥,230036
基金项目:安徽省教育厅自然科学基金  
摘    要:针对智能车辆转向系统的复杂,非线性和时变性,提出了基于改进粒子群算法的自适应PID控制,在该控制系统结构中,采用改进粒子群算法获得PID参数在线调整的信息,完成PID控制器参数的在线自整定,实现智能车辆转向的智能控制.实验结果表明,与常规的PID控制方法相比,该方法具有较高控制精度,较强的自适应性和鲁棒性,完全可适用于智能车辆转向系统的控制.

关 键 词:改进粒子群算法  比例-积分-微分(PID)  非线性控制  转向系统

Self-adaptive PID control for intelligent vehicle steering system based on IPSO
JIAO Jun,CHEN Wu-wei,LI Shao-wen,WANG Ji-xian. Self-adaptive PID control for intelligent vehicle steering system based on IPSO[J]. Journal of Anhui University(Natural Sciences), 2008, 32(6)
Authors:JIAO Jun  CHEN Wu-wei  LI Shao-wen  WANG Ji-xian
Abstract:To intelligent vehicle steering system which are of characteristics of complex,nonlinearity and time-variation,a self-adaptive PID control was proposed based on improved particle swarm optimization algorithm(IPSO),which acquired on-line tuning information of PID parameters,and the self-tuning of controller parameters was implemented by IPSO,and the intelligent control of system was achieved.The result indicated that the control system,compared to conventional PID control method,possessed the advantages of high precision,great adaptability and robustness,so it was feasible for intelligent vehicle steering system.
Keywords:improved particle swarm optimization algorithm  Proportional Integral Derivative(PID)  nonlinear control  steering system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号