首页 | 本学科首页   官方微博 | 高级检索  
     

停车受限条件下多模式交通网络动态拥挤收费
引用本文:汪景,张小宁. 停车受限条件下多模式交通网络动态拥挤收费[J]. 系统工程理论与实践, 2015, 35(12): 3182-3191. DOI: 10.12011/1000-6788(2015)12-3182
作者姓名:汪景  张小宁
作者单位:1. 同济大学 道路与交通工程教育部重点实验室, 上海 201804;2. 同济大学 经济与管理学院, 上海 200092
基金项目:国家杰出青年科学基金(71125004)
摘    要:
在一个多起始单终点的交通网络上,本文研究当终点处停车空间不足时,如何通过在路段瓶颈处实施拥挤收费实现系统最优.首先,根据小汽车和公交的出行成本函数,运用凸规划算法求解系统最优条件下网络中各OD最优的小汽车和公交出行量.其次,根据系统最优时的小汽车出行量,计算出为了消除交通瓶颈处车辆排队而实施的动态拥挤收费.再次,根据小汽车和公交车出行成本的均衡条件,计算出各OD对每辆小汽车出行者应缴纳的停车拥挤附加费(或应获取的补贴),收取该费用(或发放补贴)的目的是调节小汽车和公交的出行量使它们在双模式均衡(小汽车与公交车出行模式均衡)条件下分别达到系统最优水平.最后,算例分析了两组OD对的情况,计算出两种泊位供应量下各OD对小汽车最优出行量与小汽车出行的停车拥挤附加费或补贴,并且给出了动态拥挤收费与道路收费的函数曲线.

关 键 词:瓶颈模型  拥挤收费  双模式均衡  系统最优  凸规划  
收稿时间:2014-06-13

Dynamic congestion pricing in multi-modal transportation networks with parking restraint
WANG Jing,ZHANG Xiao-ning. Dynamic congestion pricing in multi-modal transportation networks with parking restraint[J]. Systems Engineering —Theory & Practice, 2015, 35(12): 3182-3191. DOI: 10.12011/1000-6788(2015)12-3182
Authors:WANG Jing  ZHANG Xiao-ning
Affiliation:1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2. School of Economics and Management, Tongji University, Shanghai 200092, China
Abstract:
In this paper, we studied the bottleneck congestion pricing with parking restraint at a many-to-one network where each orgin is connected to the destination by a road with a bottleneck and a parallel transit line. First, we solved the potential number of auto commuters under no toll scheme without parking restraint. Then, the convex combination method was used to solve the optimal number of auto commuters of each OD pair by minimizing the total system cost under road toll scheme when the parking space is insufficient. Second, Time-varying toll function with respect to commuter's departure time was determined by the number of auto commuters in system optimum. The time-varying toll is equivalent to the value of saving time caused by bottleneck congestion pricing. Third, according to the conditions of bi-modal equilibrium of auto and transit, we solved the constant toll or subsidy in order to develop the bi-modal equilibrium of the network under the system optimum. Last, numerical examples calculated the optimal numbers of auto commuters and the constant toll or subsidy of two OD pairs under two parking supply scenarios. The curves of time-varying toll and road toll functions were also shown in the numerical examples. The results show that the time-varying toll could reduce system cost by eliminating the queue at bottleneck and system optimum satisfies the bi-modal equilibrium conditions by the constant toll or subsidy.
Keywords:bottleneck model  congestion pricing  bi-modal equilibrium  system optimum  convex combination method  
本文献已被 CNKI 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号