首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传优化算法的二维漏磁缺陷重构
引用本文:韩文花,阙沛文. 基于遗传优化算法的二维漏磁缺陷重构[J]. 中国石油大学学报(自然科学版), 2006, 30(1): 138-141
作者姓名:韩文花  阙沛文
作者单位:上海交通大学,自动检测研究所,上海,200030
摘    要:信号逆问题,即从测量信号中恢复出缺陷轮廓及其参数,是漏磁无损评估中的一个重要课题。提出了一种基于遗传算法的逆算法,用于从漏磁信号中重构二维缺陷。在该算法中,径向基函数(RBF)神经网络用作前向模型,遗传算法用于求解逆问题中的优化问题,其优点是能够避免基于梯度下降法的迭代逆算法中可能遇到的局部最小问题,并能得到逆问题的全局最优解。实验结果验证了所提出的逆算法的有效性。

关 键 词:逆问题  径向基函数  神经网络  遗传算法  漏磁检测
收稿时间:2005-06-13

2-D defect reconstruction from magnetic flux leakage signals based on a genetic optimization algorithm
HAN Wen-hua,QUE Pei-wen. 2-D defect reconstruction from magnetic flux leakage signals based on a genetic optimization algorithm[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2006, 30(1): 138-141
Authors:HAN Wen-hua  QUE Pei-wen
Affiliation:Institute of Automatic Detection, Shanghai Jiaotong University, Shanghai 200030, China
Abstract:In magnetic flux leakage(MFL) nondestructive evaluation,a crucial problem was signal inversion,i.e.,the defect profile and its parameters are recovered from measured signals.An inverse algorithm based on genetic algorithm was proposed for reconstructing 2-D defect from MFL signals.In the algorithm,radial-basis function(RBF) neural network was utilized as forward model,and genetic algorithm was used to solve the optimization problem in the inverse problem,which can avoid the local minimum solution possibly encountered in the iterative inverse algorithm based on gradient descent and consequently achieve the global optimized solution of the inverse problem.Experimental results verify the validity of the proposed inversion algorithm.
Keywords:inversion problem   radial-basis functiom neural network   genetic algorithm   magnetic flux leakage inspection
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号