首页 | 本学科首页   官方微博 | 高级检索  
     

关于指数Diophantine方程ax+by=cz的一个猜想
引用本文:乐茂华. 关于指数Diophantine方程ax+by=cz的一个猜想[J]. 湖南文理学院学报(自然科学版), 2004, 16(3): 1-2
作者姓名:乐茂华
作者单位:湛江师范学院,数学系,广东,湛江,524048
基金项目:国家自然科学基金 , 广东省自然科学基金 , 广东省教育厅自然科学基金 , 广东省湛江市988科技兴湛计划
摘    要:
设r是大于1的奇数,m是偶数,Ur和Vr是适合Vr Ur√-1=(m √-1)r的整数,a=|Vr|,b=|Ur|,c=m2 1.证明了:当r≡3(mod 4),m≡2(mod 4),m>r/π且c是素数方幂时,方程ax by=cz仅有正整数解(x,y,z)=(2,2,r).

关 键 词:纯指数Diophantine方程  正整数解  解数
文章编号:1672-6146(2004)02-0001-02
修稿时间:2004-03-09

On a Conjecture Concerning the Exponential Diophantine Equation ax+by=cz
Le Mao - hua. On a Conjecture Concerning the Exponential Diophantine Equation ax+by=cz[J]. Journal of Hunan University of Arts and Science:Natural Science Edition, 2004, 16(3): 1-2
Authors:Le Mao - hua
Abstract:
Let r be an odd integer with r > 1, m be an even integer. Let Ur, Vr beintegers satisfying and c was a power of prime, then the equation ax + by = cz had only the positive integer solution (x,y,z) = (2, 2,r).
Keywords:Pure exponential diophantine equation  positive integer solution  number of solutions
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号