首页 | 本学科首页   官方微博 | 高级检索  
     

无穷维空间上的双曲不变流形的拓扑稳定性
引用本文:韩英豪,梁建华,胡晓雪. 无穷维空间上的双曲不变流形的拓扑稳定性[J]. 大连民族学院学报, 2013, 15(1): 49-55
作者姓名:韩英豪  梁建华  胡晓雪
作者单位:辽宁师范大学
摘    要:设$A$为$Banach$空间$W$上的一个正定扇形算子,$M$为$W$上的发展方程$partial_{t}u+Au=F(u)$所生成的半群$S_{1}(t)$的紧双曲不变流形.我们将证明对任意给定的$epsilon>0$, 存在$delta>0$,对$|G|_{{A;C^1(Omega)}}
关 键 词:发展方程   双曲不变流形  拓扑稳定性  Evolutionary equation   Hyperbolic Invariant manifolds   Topological stability  

Topological Stability of Hyperbolic Invariant Manifolds in the Infinite Dimensional Space
HAN Ying-hao,LIANG Jian-hua,HU Xiao-xue. Topological Stability of Hyperbolic Invariant Manifolds in the Infinite Dimensional Space[J]. Journal of Dalian Nationalities University, 2013, 15(1): 49-55
Authors:HAN Ying-hao  LIANG Jian-hua  HU Xiao-xue
Affiliation:(School of Mathematics,Liaoning Normal University,Dalian Liaoning 116029,China)
Abstract:Let A be a positive sectorial operator on a Banach space W,M be a compact hyperbolic invariant manifold for a semigroup St (t) generated by a given evolutionary equation δtu +Au = F (u) on the Banach space IV. We prove that for an arbitrary ε 〉0, there is a δ 〉0, such that if || G || { A;C1(Ω)}〈δ , then there is a continuous mapping h:M→W and a strictly increasing function φ:R+→R+ , one has || Aβ(h -I) || 〈2ε, and for the semigroup S2(t) generated by the evolu- tionary equation δty +Ay = F(y) + G(y), with the property that h o S1 (φ(t)) = S2 (t) o h in M.
Keywords:evolutionary equation  hyperbolic invariant manifolds  topological stability
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《大连民族学院学报》浏览原始摘要信息
点击此处可从《大连民族学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号