首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进Mask RCNN的工程车辆分割算法
引用本文:王鹏,马一村,史凡,金哲. 基于改进Mask RCNN的工程车辆分割算法[J]. 南京工程学院学报(自然科学版), 2023, 21(4): 30-36
作者姓名:王鹏  马一村  史凡  金哲
作者单位:国网江苏省电力有限公司宜兴市供电分公司, 江苏 宜兴 214206
摘    要:
针对输电通道下施工车辆与输电线之间距离难以计算、工程车辆检测精度较低等问题,提出一种改进Mask RCNN的工程车辆分割算法.首先将特征提取网络中的卷积替换为动态卷积,使网络训练时可以根据输入图像及时调整卷积核的大小,有效提高模型性能;然后在网络中添加NAM注意力机制,提高网络对工程车辆的关注度;最后修改特征融合网络为ssFPN,防止特征融合时信息丢失,加强语义融合,提高模型检测精度.对比试验结果表明,与改进前基于ResNet50的Mask RCNN算法相比,改进后算法提高了对工程车辆的检测精度,mAP提高了4.1%,后续处理得到的车辆轮廓精确,证明了改进后算法的有效性.

关 键 词:工程车辆;Mask RCNN;动态卷积;NAM注意力机制;特征融合网络
收稿时间:2023-08-13
修稿时间:2023-09-28

Engineering Vehicle Segmentation Algorithm Based on Improved Mask RCNN
WANG Peng,MA Yicun,SHI Fan,JIN Zhe. Engineering Vehicle Segmentation Algorithm Based on Improved Mask RCNN[J]. Journal of Nanjing Institute of Technology :Natural Science Edition, 2023, 21(4): 30-36
Authors:WANG Peng  MA Yicun  SHI Fan  JIN Zhe
Affiliation:State Grid Jiangsu Electric Power Co., Ltd.Yixing Power Supply Branch, Yixing 214206 , China
Abstract:
To address challenges such as the difficulty in calculating the distance between construction vehicles and transmission lines in transmission channels and the low detection accuracy of construction vehicles, an improved Mask RCNN segmentation algorithm for construction vehicles is proposed. Firstly, the convolutional layers in the feature extraction network are replaced with dynamic convolution, allowing the network to adjust the size of convolutional kernels in a timely manner during training, effectively improving model performance. Then, the normality-based attention module (NAM) attention mechanism is added to the network to improve the attention of the network to engineering vehicles. Finally, the feature fusion network is modified to ssFPN to prevent information loss during feature fusion, strengthen semantic fusion and improve the model''s detection accuracy. Experiments show that compared with the original Mask RCNN algorithm based on ResNet50, the improved algorithm enhances the detection accuracy of engineering vehicles, with a 4.1% increase in mAP (mean average precision). The subsequent processing results in precise vehicle outlines, demonstrating the effectiveness of the improved algorithm.
Keywords:
点击此处可从《南京工程学院学报(自然科学版)》浏览原始摘要信息
点击此处可从《南京工程学院学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号