首页 | 本学科首页   官方微博 | 高级检索  
     

基于奇异值分解和引导滤波的低照度图像增强算法
引用本文:龙庆延,王正勇,潘建,何小海,卿粼波. 基于奇异值分解和引导滤波的低照度图像增强算法[J]. 科学技术与工程, 2021, 21(12): 5018-5023. DOI: 10.3969/j.issn.1671-1815.2021.12.039
作者姓名:龙庆延  王正勇  潘建  何小海  卿粼波
作者单位:四川大学电子信息学院,成都610065;中国民航局第二研究所,成都610041
基金项目:国家自然科学基金(No.61871278);成都市产业集群协同创新项目(No.2016-XT00-00015-GX);四川省科技计划项目(No.2018HH0143);四川省教育厅项目(No.18ZB0355)
摘    要:
针对现有低照度图像增强算法在处理图像后容易出现色彩失真、细节丢失、过度增强等问题,提出一种基于奇异值分解和引导滤波的低照度图像增强算法.首先通过Max-RGB模型获得初始光照分量,使用奇异值分解和引导滤波对初始光照分量进行优化,得到最终光照分量.利用Retinex模型,将原低照度图与光照分量图逐点相除,得到增强图像,并...

关 键 词:Retinex  图像增强  奇异值分解  引导滤波
收稿时间:2020-08-17
修稿时间:2020-11-19

Low light image enhancement algorithm based on singular value decomposition and guided filtering
Long Qingyan,Wang Zhengyong,Pan Jian,He Xiaohai,Qing Linbo. Low light image enhancement algorithm based on singular value decomposition and guided filtering[J]. Science Technology and Engineering, 2021, 21(12): 5018-5023. DOI: 10.3969/j.issn.1671-1815.2021.12.039
Authors:Long Qingyan  Wang Zhengyong  Pan Jian  He Xiaohai  Qing Linbo
Affiliation:College of Electronics and Information Engineering, Sichuan University;The Second Research Institute of CAAC
Abstract:
The existing low light image enhancement algorithms was prone to color distortion, detail loss and excessive enhancement after image processing. A low light image enhancement algorithm based on singular value decomposition and guided filtering was proposed. First, the initial illumination component was obtained by the Max-RGB model, and the initial illumination component was optimized by singular value decomposition and guided filtering to obtain the final illumination component. Using the Retinex model, the original low illumination image and the light component image was divided point by point to obtain an enhanced image. The G component map of the original image was used as the guide image, and the enhanced image was denoised by the guide filtering. The experimental results show that the algorithm can obtain more realistic images with better visual effects, and avoid problems such as excessive enhancement and halo.
Keywords:Retinex   image enhancement   singular value decomposition   guided filtering
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号