首页 | 本学科首页   官方微博 | 高级检索  
     

启发式动态社区挖掘算法研究与实现
引用本文:马瑞新,邓贵仕,王晓. 启发式动态社区挖掘算法研究与实现[J]. 大连理工大学学报, 2012, 52(2): 272-276
作者姓名:马瑞新  邓贵仕  王晓
作者单位:1. 大连理工大学软件学院,辽宁大连,116620
2. 大连理工大学管理与经济学部,辽宁大连,116024
摘    要:针对社会网络的动态特征,应用多模态函数优化和粒子群优化算法的基本思想,引入社区种子和社区主题的概念,分层进行社区的挖掘.首先对复杂网络中存在的固定联系进行社区挖掘,构建基本社区结构;然后分析社区内容,根据社区内节点之间的隐性行为特征定义社区主题,精分细化社区结构直到结构稳定.实验证明,该算法极大地提高了社区挖掘的精度,降低了运算复杂度.并且该算法能够有效地保持社会网络中社区的多样性,加速社区内节点收敛,快速寻找到稳定的社区结构.

关 键 词:多模态函数优化  粒子群优化  社区主题  分层挖掘  社区多样性

Research and implementation of heuristic dynamic community discovery algorithm
MA Ruixin,DENG Guishi,WANG Xiao. Research and implementation of heuristic dynamic community discovery algorithm[J]. Journal of Dalian University of Technology, 2012, 52(2): 272-276
Authors:MA Ruixin  DENG Guishi  WANG Xiao
Affiliation:1.School of Software Technology,Dalian University of Technology,Dalian 116620,China; 2.Faculty of Management and Economics,Dalian University of Technology,Dalian 116024,China
Abstract:In terms of the dynamic features in social network,the concepts of community seed and community theme based on the instruction of multimodal function optimization and particle swarm optimization algorithms are introduced to hierarchically discover the social community.Firstly,the immovable connections are used to dig community structures in complex networks and construct the fundamental community structures.Secondly,the community context is analyzed and the community theme is defined according to the recessive behavioral characteristics of nodes in the same community.Then,the community members are refined until the structure is steady.Experimental results show that this algorithm can effectively preserve the diversity of communities in social network,accelerate the convergence of nodes in communities and quickly find the steady social structures.
Keywords:multimodal function optimization particle swarm optimization community theme hierarchical discovery diversity of communities
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大连理工大学学报》浏览原始摘要信息
点击此处可从《大连理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号