首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波包和Elman神经网络的螺杆泵井故障诊断
引用本文:任伟建,路阳,肖阔宪,董宏丽. 基于小波包和Elman神经网络的螺杆泵井故障诊断[J]. 系统仿真学报, 2012, 24(4): 912-915
作者姓名:任伟建  路阳  肖阔宪  董宏丽
作者单位:1. 东北石油大学电气信息工程学院,大庆,163318
2. 东北石油大学电气信息工程学院,大庆163318/黑龙江八一农垦大学信息技术学院,大庆163319
3. 中交二公局第四工程有限公司软件开发中心,洛阳,471013
基金项目:国家自然科学基金青年科学基金项目(61004067);黑龙江省教育厅科学技术研究项目(12511014)
摘    要:
在螺杆泵井故障诊断技术中,有功功率信号最能全面反映螺杆泵井的泵况。提出一种基于小波包分析结合Elman神经网络的故障诊断方法,该方法采用小波包对螺杆泵有功功率信号进行消噪滤波,将不同频段的故障信号进行3层db4小波包分解,根据各频段功率谱的变化提取故障特征,应用Elman神经网络进行识别。利用Matlab仿真,结果表明,该方法能有效提高螺杆泵井的故障诊断准确性。

关 键 词:故障诊断  小波包分析  Elman神经网络  螺杆泵

Study of Fault Diagnosis of Progressing Cavity Pump Well Based on Wavelet Package and Elman Neural Network
REN Wei-jian,LU Yang,XIAO Kuo-xian,DONG Hong-li. Study of Fault Diagnosis of Progressing Cavity Pump Well Based on Wavelet Package and Elman Neural Network[J]. Journal of System Simulation, 2012, 24(4): 912-915
Authors:REN Wei-jian  LU Yang  XIAO Kuo-xian  DONG Hong-li
Affiliation:1(1.College of Electrical and Information Engineering,Daqing Petroleum Institute,Daqing 163318,China; 2.College of Information Science and Technology,Heilongjiang Bayi Agricultural University,Daqing 163319,China; 3.China Communications Second Highway Bureau Fourth Engineering Co.,Ltd.,Luoyang 471013,China)
Abstract:
In the fault diagnosis technology of progressing cavity pump well,the signals of active power can fully reflect the status of progressing cavity pump wells.A fault diagnosis method for cavity pump wells based on wavelet analysis and Elman neural network was proposed.This method used wavelet time-frequency analysis technology for de-noising and filtering of active power signals,used 3-layer db4 wavelet packet to decomposition fault signal of different frequencies,extracted fault feature based on changes in band power spectrum,then used Elman neural network to identify the fault.By use of Matlab simulation,the results show that this method can effectively improve the diagnostic accuracy of progressing cavity pump wells.
Keywords:fault diagnosis  wavelet analysis  Elman neural network  progressing cavity pump
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号