首页 | 本学科首页   官方微博 | 高级检索  
     

基于SBDART和BP的夜间雾遥感检测和能见度反演
引用本文:张伟康,马慧云,邹峥嵘,陶 超. 基于SBDART和BP的夜间雾遥感检测和能见度反演[J]. 解放军理工大学学报(自然科学版), 2014, 0(2): 191-196
作者姓名:张伟康  马慧云  邹峥嵘  陶 超
作者单位:中南大学 地球科学与信息物理学院,湖南 长沙 410083
基金项目:国家863计划资助项目(2012AA120801);国家自然科学基金资助项目(40901171)
摘    要:为了挖掘卫星影像中的雾信息为雾预测预报服务,利用双红外亮温差值作为雾与地物识别分类标志,建立基于SBDART辐射传输模型和BP神经网络的夜间雾遥感检测和能见度反演模型。对2007年11月24日我国华北地区的一次陆地辐射雾MODIS卫星数据进行雾检测,同时反演雾区能见度。根据陕西省气象局提供的地面气象观测数据对模型雾检测结果和能见度反演结果进行验证,该次实验夜间雾检测的准确率为79.2%,地面观测能见度和反演能见度一元线性回归分析方程斜率为1.006,相关系数为0.8498。实验结果表明,模型具有较高的雾识别率和雾能见度反演结果,可为夜间雾识别和生消发展规律探讨提供一定的帮助。

关 键 词:MODIS  SBDART  夜间雾检测  能见度反演  BP神经网络
收稿时间:2013-10-15

Nighttime radiation fog detection and visibility retrieval basedon SBDART and BP neural networks
ZHANG Weikang,MA Huiyun,ZOU Zhengrong and TAO Chao. Nighttime radiation fog detection and visibility retrieval basedon SBDART and BP neural networks[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2014, 0(2): 191-196
Authors:ZHANG Weikang  MA Huiyun  ZOU Zhengrong  TAO Chao
Affiliation:Department of Surveying and Geo-informatics, Central South University,Changsha 410083,China
Abstract:Fog is a disastrous weather phenomenon, which seriously influences people's daily life and economic activities.A nighttime fog detection and visibility retrieval model was established based on SBDART(santa barbara DISORT atmospheric radiative transfer)and BP(back propagation) Neural Networks using brightness temperature information and difference information between MIR and TIR. The model was tested in the North China Plain on November 24, 2007, with 1 km resolution MODIS/ TERRA images, and the fog detection accuracies and visibility retrieval result were evaluated using the observation results from Shanxi Meteorological Bureau. Results show that the accuracy of fog detection is 79. 2%, the slope is 1. 006 and the correlation coefficient is 0. 8498 of unary linear regression between the visibility observation values and the inversion visibility values. The model can provide strong support for the fog detection and visibility retrieval, which can contribute to further understanding of the development and extinction discipline of nighttime radiation fog.
Keywords:MODIS   SBDART   nighttime fog detection   visibility retrieval   BP neural networks
本文献已被 CNKI 等数据库收录!
点击此处可从《解放军理工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《解放军理工大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号