首页 | 本学科首页   官方微博 | 高级检索  
     

析取置信规则库系统参数优化的深度神经网络模型
引用本文:郑铭鸿,方炜杰,叶己峰,傅仰耿. 析取置信规则库系统参数优化的深度神经网络模型[J]. 福州大学学报(自然科学版), 2022, 50(3): 315-322
作者姓名:郑铭鸿  方炜杰  叶己峰  傅仰耿
作者单位:福州大学计算机与大数据学院,福州大学计算机与大数据学院,福州大学计算机与大数据学院,福州大学计算机与大数据学院
基金项目:国家自然科学基金资助项目(61773123)、福建省自然科学基金资助项目(2019J01647)
摘    要:
基于深度学习的置信规则库系统(BRB-DL)比传统的置信规则库系统(BRB)具有更好的推理精度和适用性。然而,现有的BRB-DL在参数优化方面存在可移植性不足、应用效率低等局限性。鉴于此,本文将深度神经网络与析取置信规则库结合,有效减少了模型的规则和参数的数量,并引入梯度下降算法优化模型参数,提高了模型构建和优化的效率。最后,通过非线性函数的拟合,北京市空气质量污染预测和多个UCI公共分类数据集的实验对本文提出的方法进行验证,并将实验结果与现有的置信规则库系统和传统的机器学习方法进行了对比。结果表明,本文提出的方法比传统的方法具有更高的推理精度和更快的训练速度。

关 键 词:析取置信规则库;D-S证据理论;参数优化;梯度下降
收稿时间:2021-10-05
修稿时间:2021-12-22

Deep neural network model for parameter optimization of disjunctive belief rule base system
ZHENG Minghong,FANG Weijie,YE Jifeng,FU Yanggeng. Deep neural network model for parameter optimization of disjunctive belief rule base system[J]. Journal of Fuzhou University(Natural Science Edition), 2022, 50(3): 315-322
Authors:ZHENG Minghong  FANG Weijie  YE Jifeng  FU Yanggeng
Affiliation:College of Computer and Data Science, Fuzhou University,College of Computer and Data Science, Fuzhou University,College of Computer and Data Science, Fuzhou University,College of Computer and Data Science, Fuzhou University
Abstract:
Belief rule base based on deep learning (BRB-DL) has better inference accuracy and applicability than the belief rule base (BRB). However, the existing parameter optimization methods have limitations such as insufficient portability and inefficiency in the application. Therefore, for the above problems, this paper combines deep neural network with disjunctive belief rule base, which reduces the number of rules and parameters and improves the efficiency of model construction and optimization via the gradient descent algorithm. Finally, this paper fits nonlinear functions, Beijing air pollution prediction and experiments on public datasets from UCI, and compares the experimental results with some existing EBRB systems and conventional machine learning methods. The results show that the proposed method in this paper has higher accuracy and faster training velocity than the conventional methods.
Keywords:disjunctive belief rule base   D-S theory of evidence   parameter optimization   gradient descent
点击此处可从《福州大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《福州大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号