首页 | 本学科首页   官方微博 | 高级检索  
     

轴系弯扭耦合振动的数学模型
引用本文:张勇,蒋滋康. 轴系弯扭耦合振动的数学模型[J]. 清华大学学报(自然科学版), 1998, 0(8)
作者姓名:张勇  蒋滋康
作者单位:清华大学热能工程系
摘    要:从弯扭耦合的角度来研究旋转轴系的振动,将能更准确地把握轴系的动力学特性,从而为轴系的安全运行提供更有效的保障。本文建立了一个基于分段连续质量模型的轴系弯扭耦合振动数学模型,该模型考虑了不平衡、陀螺力矩、转动惯量、剪切变形及阻尼的影响,因而是一个比较精确的模型。从所得到的微分方程可以得出:当轴系存在不平衡时,扭转振动与弯曲振动之间存在着很明显的相互耦合关系,而且是高度非线性的。而当轴系没有不平衡时,扭转振动会对弯曲振动产生微弱的影响,而弯曲振动对扭转振动没有影响。

关 键 词:轴系;弯扭耦合振动;数学模型

Mathematic model of coupled bending and torsional vibration of shaft systems
ZHANG Yong,JIANG Zikang. Mathematic model of coupled bending and torsional vibration of shaft systems[J]. Journal of Tsinghua University(Science and Technology), 1998, 0(8)
Authors:ZHANG Yong  JIANG Zikang
Affiliation:ZHANG Yong,JIANG Zikang Department of Thermal Engineering,Tsinghua University,Beijing 100084,China
Abstract:If the coupled bending and torsional vibration of the rotating shaft system is studied, its dynamic charcteristics can be grasped more exactly, and more efficiently insurance for the safely run of the shaft system can be provided. A mathematic model of the coupled bending and torsional vibration of shaft systems based on a continuous mass model is built. Unbalance, gyroscopic, rotary inertia, shear deformation and damping are considered in this model, so it is a comparatively accurate model. According to the differential equation of the mathematic model, the following conclusion can be drawn, if unbalance exists, the bending vibration and torsional vibration are coupled distinctly, and their relation is highly nonlinear. If unbalance does not exist, the torsional vibration will affect the bending vibration slightly, but the bending vibration will not affect the torsional vibration.
Keywords:shaft systems  coupled bending and torsional vibration  mathematic model
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号