首页 | 本学科首页   官方微博 | 高级检索  
     

基于混沌理论和自适应惯性权重的PSO算法优化
引用本文:安鹏. 基于混沌理论和自适应惯性权重的PSO算法优化[J]. 吉林大学学报(理学版), 2015, 53(6): 1223-1228
作者姓名:安鹏
作者单位:宁波工程学院 电子与信息工程学院, 浙江 宁波 315016
摘    要:
针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值的概率.通过在多个常用测试函数上与其他算法比较,证明了所提改进粒子群算法的正确性和有效性.

关 键 词:粒子群优化算法  混沌  惯性权重  自适应  
收稿时间:2015-01-21

Optimization of PSO Algorithm Based on Chaotic Theory and Adaptive Inertia Weight
AN Peng. Optimization of PSO Algorithm Based on Chaotic Theory and Adaptive Inertia Weight[J]. Journal of Jilin University: Sci Ed, 2015, 53(6): 1223-1228
Authors:AN Peng
Affiliation:College of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang Province, China
Abstract:
In view of both fixed inertia weight and premature convergenceobvious flaws of particle swarm optimization (PSO) algorithm, a dynamic adaptive adjustment strategy for inertia weight was proposed on the basis of a detailed analysis of the relationship among the inertia weight, population size, particle fitness and search space dimension, which effectively enhances the global and local optimization abilities of the algorithm. For the problem of premature, the chaotic mappingmethod was used to increase the diversity of the population, while the group extreme was adjusted in the direction of negative gradient, which greatly reduces theprobability of fall into the local extreme. The correctness and effectiveness of the proposed PSO algorithm were verified to improve by some common used test functions compared with those by other algorithms.
Keywords:particle swarm optimization (PSO) algorithm  chaotic  inertia weight  adaptive  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号