首页 | 本学科首页   官方微博 | 高级检索  
     

改进的粗糙集模糊聚类算法及其应用
引用本文:张强,吕巍. 改进的粗糙集模糊聚类算法及其应用[J]. 吉林大学学报(理学版), 2015, 53(6): 1291-1294
作者姓名:张强  吕巍
作者单位:1. 白城师范学院 计算机科学学院, 吉林 白城 137000; 2. 吉林大学 计算机科学与技术学院, 长春 130012
摘    要:通过将粗糙集和模糊聚类算法相结合, 利用粗糙集中上近似集和下近似集的概念改进模糊聚类算法, 解决了模糊聚类边界不确定的问题, 得到了上近似集和下近似集的聚类结果, 从而实现更好的聚类, 改进算法可以处理边界问题和复杂数据问题. 将改进的粗糙集模糊聚类算法用于研究环糊精聚类, 并将聚类结果与K均值聚类分析算法、 模糊C均值聚类算法相比, 实验结果表明, 改进算法有较好的聚类效果.

关 键 词:模糊聚类  粗糙集  聚类  K-均值聚类  
收稿时间:2015-08-21

Application of Improved Rough Set Fuzzy Clustering Algorithm
ZHANG Qiang,LV Wei. Application of Improved Rough Set Fuzzy Clustering Algorithm[J]. Journal of Jilin University: Sci Ed, 2015, 53(6): 1291-1294
Authors:ZHANG Qiang  LV Wei
Affiliation:1. School of Computer Science, Baicheng Normal University, Baicheng 137000, Jilin Province, China;2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract:An improved algorithm was proposed which combined rough set algorithm with fuzzy clustering algorithm. The algorithm took full advantage of lower approximation set and upper approximation set in rough set to solve the problem of uncertain border of fuzzy clustering, gettingthe result of cluster in lower approximation set and upper approximation set so as to achieve better clustering. It can deal with border issuesand complex data issues. The proposed algorithm was applied to researching on cyclodextrin clustering, with the results showing that compared with K-means clustering algorithm and fuzzy C-means clustering algorithm, improved algorithm has a better clustering effect.
Keywords:fuzzy clustering  rough set  clustering  K-means clustering  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号