首页 | 本学科首页   官方微博 | 高级检索  
     

无限长条功能梯度材料的非局部理论分析
引用本文:刘宝良,毕贤顺,阎龙海. 无限长条功能梯度材料的非局部理论分析[J]. 黑龙江科技学院学报, 2005, 15(3): 182-184
作者姓名:刘宝良  毕贤顺  阎龙海
作者单位:黑龙江科技学院,数力系,哈尔滨,150027
基金项目:黑龙江省自然科学基金资助项目(A01-10),黑龙江省教育厅基金项目(10551269)
摘    要:假设剪切模量沿厚度方向连续且为指数形式模型,研究了含有限长裂纹的无限长条功能梯度材料在反平面剪应力荷载作用下的裂纹问题。利用非局部线弹性理论和积分变换方法,将混合边界值问题简化为对偶积分方程,最后通过Schmidt方法对裂纹尖端的应力场和位移场进行了求解。结论表明,经典理论中的应力奇异性消失,在远离裂纹尖端的条件下的非局部解答和经典解答是一致的。

关 键 词:功能梯度材料 非局部理论 裂纹 积分变换 对偶积分方程
文章编号:1671-0118(2005)03-0182-03

Research on infinite strip of functionally graded material using nonlocal theory
LIU Baoliang,BI Xianshun,YAN Longhai. Research on infinite strip of functionally graded material using nonlocal theory[J]. Journal of Heilongjiang Institute of Science and Technology, 2005, 15(3): 182-184
Authors:LIU Baoliang  BI Xianshun  YAN Longhai
Abstract:A finite crack in an infinite strip of functionally graded material (FGM) under anti-plane shear loading is analyzed. It is assumed that the shear moduli varies continuously in the thickness direction and is to be of exponential form. The mixed boundary value problem is reduced to a dual integral equation by means of nonlocal linear elasticity theory and integral transform method. The stress field and displacement field near the tip of a crack for an infinite strip of FGM are solved by using Schmidt's method. The conclusion shows that the singularity of the solution of classical theory does not exist, and the solution of nonlocal theory accords with that of classical theory far from the tip of a crack.
Keywords:functionally graded material  nonlocal theory  crack  integral transforms  dual integral equations
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号