首页 | 本学科首页   官方微博 | 高级检索  
     

关于拟 Frobenius 余环
引用本文:郭广泉. 关于拟 Frobenius 余环[J]. 安徽大学学报(自然科学版), 2007, 31(6): 10-12. DOI: 10.3969/j.issn.1000-2162.2007.06.003
作者姓名:郭广泉
作者单位:南京晓庄学院,数学系,江苏,南京,210017
摘    要:
定义并研究了拟 Frobenius 余环,证明了下面几个等价条件:C 是拟 Frobeniua 余环;AC有限生成投射模,并且 l:A→˙C 是 Frobenius 扩张;CA 有限生成投射模,并且l:A→C˙是 Frobenius 扩张;忘却函子Ur:Mε→MA是拟 Frobenius 函子;(G1,U1)与(Gr,Ur) 都是拟左 Frobenius 函子偶;忘却函子Ul:εM→AM 是拟 Frobenius 函子.

关 键 词:拟 Frobenius 余环  左拟 Frobenius 余环  左拟 Frobenius 函子偶  拟 Frobenius 函子
文章编号:1000-2162(2007)06-0010-03
收稿时间:2007-05-16
修稿时间:2007-05-16

On quasi-Frobenius corings
GUO Guang-quan. On quasi-Frobenius corings[J]. Journal of Anhui University(Natural Sciences), 2007, 31(6): 10-12. DOI: 10.3969/j.issn.1000-2162.2007.06.003
Authors:GUO Guang-quan
Abstract:
In this paper,the notion of quasi-Frobenius corings is introduced.We prove that following conditions for a coring C are equivalent:C is a quasi-Frobenius coring;AC is finitely generated and projective,and the ring extension l:A→*C is a Frobenius;CA is finitely generated and projective,and the ring extension l:A→*C is quasi-Frobenius;the forgetful functor Ur:Mc→MA is quasi-Frobenius;(Gl,Ul) and(Gr,Ur) are left quasi-Frobenius functors pairs;the forgetful functor Ul:cM→AM is quasi-Frobenius.
Keywords:quasi-Frobenius coring  left quasi-Frobenius coring  left quasi-Frobenius functor pairs  quasi-Frobenius functor
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号