首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM的短波频率参数预测
引用本文:张雯鹤,黄国策,董淑福,王董礼. 基于LSTM的短波频率参数预测[J]. 空军工程大学学报(自然科学版), 2019, 20(3): 59-64
作者姓名:张雯鹤  黄国策  董淑福  王董礼
作者单位:空军工程大学研究生院,西安,710051;空军工程大学信息与导航学院,西安,710077
基金项目:国家自然科学基金(61701521)
摘    要:针对现有短波通信频率参数预测方法操作繁琐、预测精度不足的缺点,首次提出一种基于长短期记忆型循环神经网络(LSTM RNN)的预测方法。通过对电离层参数f0F2数据的分析,利用LSTM在处理时序相关数据时可以长期记忆网络历史数据的优势,对f0F2值进行预测。对比反向传播神经网络(BPNN),LSTM将误差降低了7%,并将均方误差控制在2%以下。研究结果表明:基于LSTM搭建的提前预报5天的f0F2值的模型是可行的且比BP神经网络更适合预测电离层的f0F2值。

关 键 词:短波通信  频率预测  长短期记忆神经网络

A Prediction of Frequency Parameters Based on LSTM for High Frequency Communication
ZHANG Wenhe,HUANG Guoce,DONG Shufu,WANG Dongli. A Prediction of Frequency Parameters Based on LSTM for High Frequency Communication[J]. Journal of Air Force Engineering University(Natural Science Edition), 2019, 20(3): 59-64
Authors:ZHANG Wenhe  HUANG Guoce  DONG Shufu  WANG Dongli
Abstract:Aimed at the problems that in the existing high frequency communication, the frequency parameter prediction methods are tedious formalities in operation and shortage in precision, this paper presents a prediction model of frequency parameters of short wave communication based on long short term memory recurrent neural networks. This neural network can break through the limitations of traditional neural networks and establish long term correlations on data sequences. The experimental results show that the mean square error (MSE) can be control below 2% and the model reduced the error by 7%. And this method is effective and superior to the traditional prediction method.
Keywords:HF communication   frequency parameter prediction   long short-term memory recurrent neural networks
本文献已被 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号