首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树判别的高温目标遥感识别方法
引用本文:郑覃,潘军,蒋立军,邢立新,季悦,袁悦. 基于决策树判别的高温目标遥感识别方法[J]. 科学技术与工程, 2019, 19(11)
作者姓名:郑覃  潘军  蒋立军  邢立新  季悦  袁悦
作者单位:吉林大学地球探测科学与技术学院,长春,130026;吉林大学地球探测科学与技术学院,长春,130026;吉林大学地球探测科学与技术学院,长春,130026;吉林大学地球探测科学与技术学院,长春,130026;吉林大学地球探测科学与技术学院,长春,130026;吉林大学地球探测科学与技术学院,长春,130026
基金项目:高等学校博士学科点专项科研基金新教师类资助课题项目(编号:20110061120067)资助。
摘    要:通常,高温目标与常温地物间光谱特征差异显著;但研究发现,Landsat8 OLI遥感影像中彩钢屋顶像元却与高温目标(林火)的光谱特征颇为相似,使用以往高温目标识别方法识别效果不佳。为实现高温目标的精确识别,引入决策树判别法;根据不同地物类型的相似程度构建决策树模型,针对各分支结点的相似地物类型,按定量指标分别进行特征波段筛选,确定反映地物间本质区别的判别函数,并经分类统计确定判别阈值。研究表明,所构建的决策树能够准确划分地物类型,在实现同一般常温地物有效区分的同时,能有针对性地区分高温目标与彩钢屋顶建筑,高温目标识别精度为97. 67%。

关 键 词:高温目标  决策树  相似程度  特征波段  判别函数
收稿时间:2018-11-26
修稿时间:2019-01-18

Method of High Temperature Targets Remote Sensing Recognition Based on Decision Tree Discrimination
ZHENG Qin,JIANG Li-jun,XING Li-xin,JI Yue and YUAN Yue. Method of High Temperature Targets Remote Sensing Recognition Based on Decision Tree Discrimination[J]. Science Technology and Engineering, 2019, 19(11)
Authors:ZHENG Qin  JIANG Li-jun  XING Li-xin  JI Yue  YUAN Yue
Affiliation:College of Geo-Exploration Science and Technology,Jilin University,,College of Geo-Exploration Science and Technology,Jilin University,College of Geo-Exploration Science and Technology,Jilin University,College of Geo-Exploration Science and Technology,Jilin University,College of Geo-Exploration Science and Technology,Jilin University
Abstract:Generally, spectral differences between high temperature targets and normal temperature objects are significant. However, it is found that pixels of color steel roof in the Landsat8 OLI remote sensing image are quite similar to the high temperature targets (forest fires), and using previous high temperature target recognition method to identify not effectively.In order to realize accurate identification of high temperature targets, decision tree discriminant method is introduced. The decision tree model is constructed according to the similarity degree of different feature types. For the similar feature types under each branch node, sensitive bands are screened according to quantitative indicators, discriminant functions reflecting the essential difference between objects are determined, and discriminant thresholds are determined by classification statistics. The research shows that the constructed decision tree can accurately classify feature types, and classify high temperature targets and color steel roof buildings in a targeted way while achieving effective separation from normal temperature objects. The high temperature targets recognition accuracy is 97.67%.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号