首页 | 本学科首页   官方微博 | 高级检索  
     

基于IREA的模糊神经网络及其在网络拥塞预测中的应用
引用本文:戚湧,於东军,杨静宇,刘风玉. 基于IREA的模糊神经网络及其在网络拥塞预测中的应用[J]. 系统仿真学报, 2004, 16(5): 1005-1008
作者姓名:戚湧  於东军  杨静宇  刘风玉
作者单位:南京理工大学计算机系,南京,210094
基金项目:This work was supported by NNSFC (National Nature Science Foundation of China)
摘    要:将粗糙集从原始数据中提取数据的能力和模糊神经网络的推理能力有效地集成起来。使用增量式规则提取算法(IREA)从原始数据中抽取构建模糊神经网络(FNN)所需的规则集。与传统的模糊神经网络相比较,使用IREA算法构建的FNN具有较短的规则长度和更少的规则条数。网络拥塞仿真试验验证了本文所述方法的优越性。

关 键 词:粗糙集  模糊神经网络  增量规则提取  网络拥塞
文章编号:1004-731X(2004)05-1005-04
修稿时间:2003-12-22

IREA-based Fuzzy Neural Network and Its Application to Network Congestion Prediction
QI Yong,YU Dong-jun,YANG Jing-yu,LIU Feng-yu. IREA-based Fuzzy Neural Network and Its Application to Network Congestion Prediction[J]. Journal of System Simulation, 2004, 16(5): 1005-1008
Authors:QI Yong  YU Dong-jun  YANG Jing-yu  LIU Feng-yu
Abstract:In this paper, rough set theorys ability of extracting crude domain knowledge in the form of rules from the data and FNNs ability of reasoning are combined to improve peoples ability of dealing with uncertainty, imprecision data. An incremental rule extraction algorithm (IREA) is utilized to construct IREA-based FNN. Compared with the classical FNN, IREAbased FNN has characteristics of fewer rules and shorter rule length. Network congestion prediction simulation demonstrates the superiority of the proposed IREA-based FNN over the classical FNN under the circumstance of no initial field knowledge.
Keywords:Rough Set  Fuzzy Neural Networks  Incremental Rule Extraction  Network Congestion
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号