首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于改进长短时记忆网络的文本分类方法
作者姓名:
李建平
陈海鸥
作者单位:
东北石油大学 计算机与信息技术学院,黑龙江 大庆 163318
基金项目:
国家自然科学基金资助项目(61702093)。
摘 要:
针对传统长短时记忆网络(long short-term memory,LSTM)在文本分类中无法自动选取最重要潜在语义因素的问题,提出一种改进的LSTM模型。首先,将传统LSTM的运算关系拓展为双向模式,使网络充分记忆输入特征词的前后关联关系;然后在输出层前面增加池化层,以便更好选择找到最重要的潜在语义因素。
互联网电影资料库评论数据实验结果表明,该模型优于传统长短时记忆神经网络以及其他同类模型,揭示了改进方案对提高文本分类准确率是有效的。
关 键 词:
自然语言处理
文本分类
循环神经网络
长短时记忆神经网络
收稿时间:
2021-08-11
本文献已被
万方数据
等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号