首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的新浪微博营销类水帖识别研究
作者姓名:叶施仁  孙宁
摘    要:研究一种发现水帖的分类算法.该方法利用SimHash方法将发帖重复当成类似网页去重的问题处理,发帖内容的重复度和其他特征,如发帖的密集型、帐号名称的相似性,所使用的客户端等特征将用于水帖与正常发帖的分类.该文利用新浪微博API下载多个汽车营销账号下的交互数据作为实验数据,并使用SVM作为分类器.实验结果表明,该方法能够较好地发现那些伪装性非常好的水军所发布的水帖.

关 键 词:评论行为;评论特征;支持向量机;水帖识别
本文献已被 CNKI 等数据库收录!
点击此处可从《湘潭大学自然科学学报》浏览原始摘要信息
点击此处可从《湘潭大学自然科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号