首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于SVM的新浪微博营销类水帖识别研究
作者姓名:
叶施仁
孙宁
摘 要:
研究一种发现水帖的分类算法.该方法利用SimHash方法将发帖重复当成类似网页去重的问题处理,发帖内容的重复度和其他特征,如发帖的密集型、帐号名称的相似性,所使用的客户端等特征将用于水帖与正常发帖的分类.该文利用新浪微博API下载多个汽车营销账号下的交互数据作为实验数据,并使用SVM作为分类器.实验结果表明,该方法能够较好地发现那些伪装性非常好的水军所发布的水帖.
关 键 词:
评论行为;评论特征;支持向量机;水帖识别
本文献已被
CNKI
等数据库收录!
点击此处可从《湘潭大学自然科学学报》浏览原始摘要信息
点击此处可从《湘潭大学自然科学学报》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号