首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb
Authors:Diddams Scott A  Hollberg Leo  Mbele Vela
Institution:Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA. sdiddams@boulder.nist.gov
Abstract:The control of the broadband frequency comb emitted from a mode-locked femtosecond laser has permitted a wide range of scientific and technological advances--ranging from the counting of optical cycles for next-generation atomic clocks to measurements of phase-sensitive high-field processes. A unique advantage of the stabilized frequency comb is that it provides, in a single laser beam, about a million optical modes with very narrow linewidths and absolute frequency positions known to better than one part in 10(15) (ref. 5). One important application of this vast array of highly coherent optical fields is precision spectroscopy, in which a large number of modes can be used to map internal atomic energy structure and dynamics. However, an efficient means of simultaneously identifying, addressing and measuring the amplitude or relative phase of individual modes has not existed. Here we use a high-resolution disperser to separate the individual modes of a stabilized frequency comb into a two-dimensional array in the image plane of the spectrometer. We illustrate the power of this technique for high-resolution spectral fingerprinting of molecular iodine vapour, acquiring in a few milliseconds absorption images covering over 6 THz of bandwidth with high frequency resolution. Our technique for direct and parallel accessing of stabilized frequency comb modes could find application in high-bandwidth spread-spectrum communications with increased security, high-resolution coherent quantum control, and arbitrary optical waveform synthesis with control at the optical radian level.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号