基于残差融合的时序数据离群点检测算法 |
| |
作者姓名: | 李倩倩 |
| |
作者单位: | 北京信息科技大学计算机学院 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目) |
| |
摘 要: | 物联网的快速发展产生了海量的高维时序数据,然而时间序列易受到外界变化的环境因素影响而产生离群点。针对现有的离群点挖掘算法不能兼顾时序数据的趋势性、季节性、循环性、不规则性的特点,从而导致检测效果不理想的问题,提出一种基于残差融合的时序数据离群挖掘(residual integration outlier,RIO)算法。首先利用线性自回归移动平均模型(autoregressive integrated moving average model,ARIMA)拟合数据,得到在相同时间粒度下的残差序列,并将该序列作为非线性模型长短期记忆网络(long short-term memory,LSTM)模型的输入,输出残差序列预测值,而后将经由ARIMA模型与LSTM模型处理的序列在相同时间粒度下融合,得到一条经由混合模型两次处理的残差序列。最后,利用基于直方图的离群点模型(histogram-based outlier score,HBOS)检测出该二次残差序列的离群点。实验表明,RIO算法的准确度得到了较为明显的提高,具备良好的实用价值。
|
关 键 词: | 时序数据 自回归移动平均模型 长短期记忆网络 残差融合 离群点 |
收稿时间: | 2019-01-03 |
修稿时间: | 2019-04-12 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《科学技术与工程》浏览原始摘要信息 |
|
点击此处可从《科学技术与工程》下载免费的PDF全文 |
|