首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征融合的图像区域几何标记
引用本文:刘威,遇冰,周婷,袁淮. 基于多特征融合的图像区域几何标记[J]. 东北大学学报(自然科学版), 2017, 38(7): 927-931. DOI: 10.12068/j.issn.1005-3026.2017.07.004
作者姓名:刘威  遇冰  周婷  袁淮
作者单位:(东北大学 研究院, 辽宁 沈阳110819)
基金项目:国家自然科学基金资助项目(61273239); 中央高校基本科研业务费专项资金资助项目( N151802001).
摘    要:提出一种基于多特征融合的图像区域几何标记方法.首先,提出了一种新型卷积网络结构——多尺度核卷积网络用于提取像素点的多尺度特征信息,推断像素点的几何类别,并结合图像超像素分割获得图像超像素区域的几何标记;其次,将提取的多尺度特征与超像素区域传统特征相结合,建立超像素区域的特征表达.最后,建立超像素图像的条件随机场(conditional random field,CRF)模型,对超像素区域的几何类别进行推断.在公开数据集Geometric Context(GC)上的实验结果表明,同已有算法相比,所提方法提高了图像区域几何标记的准确率.

关 键 词:多特征融合  多尺度核卷积网络  图像区域几何标记  特征学习  条件随机场模型  

Geometric Labeling of Image Regions Based on Combination of Multiple Features
LIU Wei,YU Bing,ZHOU Ting,YUAN Huai. Geometric Labeling of Image Regions Based on Combination of Multiple Features[J]. Journal of Northeastern University(Natural Science), 2017, 38(7): 927-931. DOI: 10.12068/j.issn.1005-3026.2017.07.004
Authors:LIU Wei  YU Bing  ZHOU Ting  YUAN Huai
Affiliation:Research Academy, Northeastern University, Shenyang 110819, China.
Abstract:A geometric labeling method of image regions was proposed based on combination of multiple features. First of all, according to the requirement of multi-scale feature information extraction, a novel network structure—multi-scale kernel convolutional network (MSKCN) was proposed. The multi-scale feature information was used for inferring geometric label of pixel. The geometric labeling of super-pixel regions with the image super-pixel segmentation was achieved. Then a feature representation of super-pixel regions was established by combining multi-scale features proposed and traditional features of super-pixel regions. Finally, a CRF(conditional random field) model was constructed for the super-pixel image to infer geometric label of super-pixel regions with the image super-pixel segmentation. The experiments on public database Geometric Context (GC) indicated that the accuracy of geometric labeling was improved by using the proposed method compared with the existing state-of-art.
Keywords:combination of multiple features  multi-scale kernel convolutional network  geometric labeling of image regions  feature learning  conditional random field model  
本文献已被 CNKI 等数据库收录!
点击此处可从《东北大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《东北大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号