首页 | 本学科首页   官方微博 | 高级检索  
     

素环上的导子
引用本文:吴伟. 素环上的导子[J]. 吉林大学学报(理学版), 2004, 42(2): 186-188
作者姓名:吴伟
作者单位:吉林大学数学研究所,长春,130012;北华大学师范理学院数学系,吉林,132011
摘    要:设R是中心为Z、 扩张形心为C的素环, 证明了: (1) 设f(x),g(x)为R上非零导子, 若af(x)+bg(x)亦是R上导子, 且在R上交换, 则f(x)=λx+ζ(x), g(x)=λ′x+ζ′(x), 其中λ,λ′∈C, ζ,ζ′: R→C加性映射; (2) 设R是环, 双加性映射G: R×R→R是R上对称双导子, 若[G(x,x),x]∈Z, char R≠2, 则R是交换的; (3) 若R是char R≠2的素环, d1,d2是R上非零导子, 且d< sub>1d2(R)∈Z, 则R是交换的.

关 键 词:素环  极大右商环  导子  扩张形心
文章编号:1671-5489(2004)02-0186-03
收稿时间:2003-08-20
修稿时间:2003-08-20

Derivations in prime rings
WU Wei. Derivations in prime rings[J]. Journal of Jilin University: Sci Ed, 2004, 42(2): 186-188
Authors:WU Wei
Affiliation:1. Institute of Mathematics, Jilin University, Changchun 130012, China; 2. Department of Mathematics, Normal Science College, Beihua University, Jilin 132011, China
Abstract:Let R be a prime ring with center Z and extended centroid C, We have proven the following results. (1) Let f(x) and g(x) be non-zero derivations in prime ring R, supposing that there exists a,b∈R such that af(x)+bg(x) is a derivation of R and commuted on it, then f(x)=λx+ζ(x), g(x)=λ′x+ζ′(x), λ,λ′∈C, additive map ζ,ζ′: R→C; (2) Let R be a ring, a biadditive map G: R×R→R is the symmetric bi-derivation of R, if [G(x,x),x]∈Z, char R≠2, then R is commuting; (3) let R be a prime ring of char R≠2 and d1,d2 be non-zero derivations in R, if d1d2 (R)∈Z, then R is commuting.
Keywords:prime ring  maximal right ring of quotient  derivation  extended centriod
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号