首页 | 本学科首页   官方微博 | 高级检索  
     

一类非线性系统反馈线性化的遗传神经网络实现
引用本文:黄新民 吴智政. 一类非线性系统反馈线性化的遗传神经网络实现[J]. 上海交通大学学报, 1997, 31(6): 38-42
作者姓名:黄新民 吴智政
作者单位:上海交通大学自动化系
摘    要:利用Hopfield反馈神经网络对一类仿射非线性系统进行反馈线性化,然后利用常规的PI控制方法设计控制器,同时指出,利用神经网络不仅可以对系统的状态进行辨识,而且可以辨识其相对阶数,并给出了完整的证明,在训练神经网络时,提出了一直直接基于寻优参数的遗传算法DPGA,仿真结果说明了该线性化方法的有效性。

关 键 词:非线性系统 神经网络 DPGA算法 反馈线性化

Linearising Feedback of One Class of Nonlinear System with Application of Genetic Evoloved Neural Network
Huang Xinmin Wu Zhizheng Xu Xiaoming. Linearising Feedback of One Class of Nonlinear System with Application of Genetic Evoloved Neural Network[J]. Journal of Shanghai Jiaotong University, 1997, 31(6): 38-42
Authors:Huang Xinmin Wu Zhizheng Xu Xiaoming
Abstract:One class of nonlinear affine systems are linearized by Hopfield neural network feedback and then controlled by a standard PI controller.In the meantime,it is proved strictly that not only the system states but also the relative degree can be identified by using the neural network.Furthermore,a direct parameter based genetic algorithem (DPGA) is presented to train the neural network.The simulation result shows that the proposed method is realizable and efficient.
Keywords:affine nonlinear system  Hopfield feedback neural network  DPGA algorithm  relative degree  linearising feedback
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号