交换环的二部本质图 |
| |
引用本文: | 张倩玉,谷伟平,赵英英. 交换环的二部本质图[J]. 信阳师范学院学报(自然科学版), 2020, 0(1): 37-41 |
| |
作者姓名: | 张倩玉 谷伟平 赵英英 |
| |
作者单位: | 1.重庆人文科技学院机电与信息工程学院;2.山东城市建设职业学院建筑经济管理系 |
| |
摘 要: | 交换环R的本质图EG(R)是一个无向简单图,它以Z(R){0}为顶点集,两个不同的顶点x、y之间有一条边相连当且仅当ann(xy)是R的一个本质理想.给出了模n剩余类环Zn的零因子图与本质图相等的充分必要条件.在此基础上,证明了交换环的二部本质图必是完全二部图,并对相应的环进行了同构分类.
|
关 键 词: | 交换环 零因子图 本质图 二部图 |
Bipartite Essential Graphs of Commutative Rings |
| |
Affiliation: | ,School of Electromechanical and Information Engineering,Chongqing College of Humanities Science and Technology,Department of Construction and Economic Management,Shandong Urban Construction Vocational College |
| |
Abstract: | For a commutative ringR, its essential graphEG(R) is an undirected simple graph whose vertex set is Z(R) {0}, and two distinct verticesxandyare adjacent if and only if ann(xy) is an essential ideal. By giving a necessary and sufficient condition forZnsuch that its zero-divisor graph coincides with its essential graph, it is showed that a bipartite essential graph of a commutative ring must be a complete bipartite graph, and the classifications of the corresponding rings up to isomorphism are also established. |
| |
Keywords: | commutative ring zero-divisor graph essential graph bipartite graph |
本文献已被 CNKI 等数据库收录! |
|