首页 | 本学科首页   官方微博 | 高级检索  
     

抛物型方程的一种高阶并行差分格式
引用本文:孙凯,王文洽. 抛物型方程的一种高阶并行差分格式[J]. 山东大学学报(理学版), 2009, 44(2): 39-44
作者姓名:孙凯  王文洽
作者单位:山东大学数学学院,山东,济南,250100  
摘    要:构造了求解抛物方程的高阶并行差分格式。首先,通过前三个时间层内界点的值及四阶紧致格式并行计算子区域的值,然后再用区域边界点显式计算内界点的值,并证明算法的稳定性条件至少为23+16, 收敛精度为四阶。最后用数值算例验证算法的稳定性及收敛性,数值结果表明此算法具有比其他算法更好的精度。

关 键 词:抛物型方程;并行差分格式;四阶精度;区域分解算法
收稿时间:2008-10-16

A high-order parallel difference scheme for a parabolic equation
SUN Kai,WANG Wen-qia. A high-order parallel difference scheme for a parabolic equation[J]. Journal of Shandong University, 2009, 44(2): 39-44
Authors:SUN Kai  WANG Wen-qia
Affiliation:School of Mathematics, Shandong University, Jinan 250100, Shandong, China
Abstract:A high order parallel finite difference algorithm of a parabolic equation was presented.First,the values of the previous three levels at the interface points were combined with the compact scheme to solve the values of sub-domains in parallel,then the values at the interface points were computed by the compact scheme.The stability bound of the procedure was derived to be at least 23+16,and the convergence rate was proved to be of order four.Numerical examples show that this method has much better accuracy t...
Keywords:parabolic equation  parallel difference algorithm  fourth-order accuracy  domain decomposition methods  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(理学版)》浏览原始摘要信息
点击此处可从《山东大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号