首页 | 本学科首页   官方微博 | 高级检索  
     

高速公路突发事件恢复重建期交通量预测
作者姓名:赵朋  王建伟  孙茂棚  周雅欣
作者单位:长安大学经济与管理学院
摘    要:为了提升高速公路突发事件应急管理能力,为突发事件恢复与重建施工及路网拥堵状况预判提供依据,提出一种高速公路突发事件恢复重建期路网交通量预测方法,利用扩散卷积和序列到序列学习框架模型,结合预定采样技术捕捉时间序列时空相关性,以高速公路联网收费数据为基础,建立路网交通量分配模型,实现对交通量时间精度下的分配;利用扩散卷积递归神经网络(DCRNN)构建高速公路路网交通量预测模型,运用扩散卷积运算来捕捉交通量的空间相关性,并使用预定采样编码器-解码器结构有效解决交通量的时间依赖问题,模型将交通的空间性建模为有向图上的扩散过程,而不是传统的网格划分;并选取自回归滑动平均模型(ARIMA)模型和机器学习BP神经网络模型对模型的准确性及有效性进行了验证。研究结果表明:将河北省石家庄高速公路路网发生突发事件后15d交通量数据做训练集,后7d数据进行验证,迭代60次时,测算每15min间隔内的路网交通量的模型精度达到0.95。提出的模型预测的平均绝对误差(MAE)和平均绝对百分比误差(MAPE)更低,能够有效弥补单一化神经网络预测模型仅能做出时序性预测的不足,可显著提高预测结果的精确性和实用性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号