首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于弱拟牛顿方程的单调梯度法的收敛性
引用本文:鲍莹莹,王希云. 一种基于弱拟牛顿方程的单调梯度法的收敛性[J]. 太原科技大学学报, 2012, 33(3): 226-230
作者姓名:鲍莹莹  王希云
作者单位:太原科技大学应用科学学院,太原,030024
基金项目:山西省自然科学基金(2008011013)
摘    要:基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在一定的假设条件下算法仍具有全局收敛性、R-线性收敛性和超线性收敛性。

关 键 词:弱拟牛顿方程  单调梯度法  全局收敛性  线性收敛性  超线性收敛性

Convergence of Monotone Gradient Algorithm Based on Weak Quasi-Newton Equation
BAO Ying-ying,WANG Xi-yun. Convergence of Monotone Gradient Algorithm Based on Weak Quasi-Newton Equation[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(3): 226-230
Authors:BAO Ying-ying  WANG Xi-yun
Affiliation:(School of Applied Sciences,Taiyuan University of Science and Technology,Taiyuan 030024,China)
Abstract:Based on weak Quasi-Newton equation,a monotone gradient algorithm was proposed by Leong W J et al.Hessian matrix was approximated by diagonal matrix in this method,thus reducing the computation and storing space.The convergence of the method has been proved when it was applied to the minimization of the convex function.On the basis of this algorithm,we can study the convergence of the algorithm for the minimization of the general function.The global convergence,the R-linear convergence and the superlinear convergence of the algorithm have been proved under given conditions.
Keywords:weak Quasi-Newton equation  monotone gradient algorithm  global convergence  linear convergence  superlinear convergence
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号