拟双曲轨道的强跟踪性 |
| |
引用本文: | 邢春娜,;韩英豪. 拟双曲轨道的强跟踪性[J]. 莆田高等专科学校学报, 2008, 0(5): 25-27 |
| |
作者姓名: | 邢春娜, 韩英豪 |
| |
作者单位: | [1]仰恩大学数学系,福建泉州362014; [2]辽宁师范大学数学学院,辽宁大连116029 |
| |
摘 要: | 设M是一个紧致n维C^∞黎曼流形,f∈Diff(M),∧是f的闭不变集合,并且∧具有连续不变分解T∧M=E F,则对任意的ε〉o和λ∈(0,1),存在δ〉0,使得对f的任意λ-拟双曲强δ-伪轨{xi,ni}i=-∞^+∞都存在一点x∈M,强ε-跟踪{xi,ni}i=-∞^+∞。
|
关 键 词: | 拟双曲轨道 强跟踪性 拟双曲强伪轨 |
Strong Shadowing Property on a Quasi-hyperbolic Orbit |
| |
Affiliation: | XING Chun-na, HAN Ying-hao (1. Department of Mathematics, Yang-En University, Quanzhou Fujian 362014, China; 2. School of Mathematics, Liaoning Normal University, Dalian Liaoning 116029, China ) |
| |
Abstract: | It is proved that the strong shadowing property on a quasi-hyperbolic orbit for a diffeomorphism on a compact C^∞ manifold M. Let f∈Diff(M), assume that ∧ is a closed invariant set off and there is a continuous invariant splitting T∧M=E F on ∧, then for any ε〉0 and λ∈ (0,1), there exists δ〉0 such that for any λ-quasi-hyperbolic strong δ-pseudoorbit {xi,ni}i=-∞^+∞,there is a point x∈M which strong ε-shadows {xi,ni}i=-∞^+∞ |
| |
Keywords: | quasi-hyperbolic orbit strong shadowing property quasi-hyperbolic strong pseudoorbit |
本文献已被 维普 等数据库收录! |
|