首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权支持向量机的选矿生产指标预报模型
引用本文:MA En-jie,白锐,CHAI Tian-you. 基于加权支持向量机的选矿生产指标预报模型[J]. 系统仿真学报, 2008, 20(8): 2220-2224
作者姓名:MA En-jie  白锐  CHAI Tian-you
作者单位:东北大学自动化研究中心,辽宁沈阳,110004
基金项目:国家重点基础研究发展计划(973计划),国家自然科学基金,国家创新研究群体科学基金,教育部长江学者和创新团队发展计划
摘    要:
在选矿生产中为了达到规定的目录,选矿工程师需要根据原矿的情况给各生产工序下达合理的生产作务,但由于选矿生产具有大滞后的特点,在选矿工程师决策下达执行前,如果能够对最终的生产结果进行预测则具有重要意义.以某选矿厂为实际背景,在分析了指标之间关系的基础上,采用加权支持向量机建立了相关指标的预报模型,并通过构造重要性函数的方法确定了支持向量机加权系数,最后利用该厂历史数据进行了传真实验

关 键 词:选矿过程  综合生产指标  加权支持向量机  加权系数

Prediction Model for Production Index of Mineral Process Based on Weighted Support Vector Machine
MA En-jie,BAI Rui,CHAI Tian-you. Prediction Model for Production Index of Mineral Process Based on Weighted Support Vector Machine[J]. Journal of System Simulation, 2008, 20(8): 2220-2224
Authors:MA En-jie  BAI Rui  CHAI Tian-you
Abstract:
To achieve desired global production indices in mineral process,proper production tasks need to be distributed to every section by engineer based on the characteristics of ores. For the large delay in mineral process,it is reasonable to predict global production indices before the decision is set down. The prediction model using the weighted support vector machine was proposed considering the factors which had relations with the global production indices. The weighted coefficients of the support vector machine were determined by importance function. Simulation results show the efficiency of the prediction model using the industrial data.
Keywords:mineral process  global production indices  weighted support vector machine  weighted coefficient
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号