首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的砂土液化影响因素的综合评估
引用本文:潘健,刘利艳,林慧常. 基于BP神经网络的砂土液化影响因素的综合评估[J]. 华南理工大学学报(自然科学版), 2006, 34(11): 76-80
作者姓名:潘健  刘利艳  林慧常
作者单位:1. 华南理工大学,建筑学院,广东,广州,510640
2. 茂名市建设工程质量监督检测站,广东,茂名,525000
摘    要:为了充分考虑影响砂土液化的多种因素,选取不同的参数组合,建立不同的砂土液化判别BP神经网络模型,编写了饱和砂土液化判别BP神经网络程序SLV,并根据现场实测资料进行计算和分析.结果表明,地震作用是液化的直接原因,砂土处于饱和状态是液化的前提条件,影响液化的主要因素包括标准贯入锤击数、砂土不均匀系数以及地震剪应力比.文中建立的BP神经网络模型具有高度的分类和识别能力,可用于评估砂土液化的影响因素.

关 键 词:砂土  液化  影响因素  评估  神经网络  Vogl快速算法
文章编号:1000-565X(2006)11-0076-05
收稿时间:2005-11-18
修稿时间:2005-11-18

Integrated Evaluation of Factors to Affect Liquefaction of Sandy Soil Based on BP Neural Network
Pan Jian,Liu Li-yan,Lin Hui-chang. Integrated Evaluation of Factors to Affect Liquefaction of Sandy Soil Based on BP Neural Network[J]. Journal of South China University of Technology(Natural Science Edition), 2006, 34(11): 76-80
Authors:Pan Jian  Liu Li-yan  Lin Hui-chang
Affiliation:1. School of Architecture and Civil Engineering, South China Univ. of Tech. , Guangzhou 510640, Guangdong, China; 2. Maoming Quality Supervision Checkpoint of Constructing Engineering, Maoming 525000, Guangdong, China
Abstract:In order to investigate various factors to affect the liquefaction of sandy soil,different BP neural network models for liquefaction evaluation were established based on different combinations of the input neurons.A BP neural network-based program,namely SLV,was then presented for the liquefaction evaluation of saturated sandy soil.Some comparison analyses were finally carried out according to the results of field observation.It is shown that the earthquake action is a direct cause of the liquefaction,that the saturation state of sandy soil is the precondition of the liquefaction,and that the standard penetration blow-count,the non-uniformity coefficient and the shearing stress ratio are the main influencing factors of the liquefaction.Moreover,it is indicated that the proposed BP neural network model can effectively evaluate the factors to affect the liquefaction of sandy soil due to its strong classifying and distinguishing ability.
Keywords:sand  liquefaction  influencing factor  evaluation  neural network  Vogl fast algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号