首页 | 本学科首页   官方微博 | 高级检索  
     

针对高速自治水下航行器的UKF主动目标跟踪算法
引用本文:刘斌,马晓川,侯朝焕. 针对高速自治水下航行器的UKF主动目标跟踪算法[J]. 系统仿真学报, 2008, 20(4): 947-950,955
作者姓名:刘斌  马晓川  侯朝焕
作者单位:1. 中国科学院研究生院,北京,100080;中国科学院声学研究所,北京,100080
2. 中国科学院声学研究所,北京,100080
基金项目:国家自然科学基金(60472101)
摘    要:
研究了基于高速自治水下航行器平台下的主动单目标跟踪,基于Unscented Kalman Filter(UKF)建立跟踪滤波器,在强观测噪声、大采样时间间隔情况下完成对目标各运动状态参量的准确估计。将此跟踪滤波器与基于Extended Kalman Filter(EKF)的跟踪滤波器进行了对比。计算机仿真结果表明采用EKF滤波器,目标的速度估计值可以收敛向真值,而距离估计值无法获得收敛;采用UKF滤波器,目标的速度和距离估计值都能获得收敛,且其对目标的速度估计较EKF准确。

关 键 词:UKF  EKF  跟踪  估计
文章编号:1004-731X(2008)04-0947-04
收稿时间:2006-11-29
修稿时间:2007-03-06

A UKF-based Active Target Tracking Algorithm for High-speed Autonomous Underwater Vehicles
LIU Bin,MA Xiao-chuan,HOU Chao-huan. A UKF-based Active Target Tracking Algorithm for High-speed Autonomous Underwater Vehicles[J]. Journal of System Simulation, 2008, 20(4): 947-950,955
Authors:LIU Bin  MA Xiao-chuan  HOU Chao-huan
Abstract:
The problem of active tracking for a unitary target based on a platform of high-speed autonomous underwater vehicles(AUV),was researched.A robust Unscented Kalman Filter(UKF)based tracking algorithm was founded.In case of strong observation noises and long sampling intervals,it led to estimate for the state parameters,which were used to describe the target's movement real time.This filter was also compared with Extended Kalman Filter(EKF)for this application.Simulation results show that the EKF can lead to some accurate estimate for the target's speed values,meanwhile,the estimates for the target's distance values become divergent.Using the UKF,both of the speed and distance values can be estimated accurately.Moreover,the speed values can be estimated more accurately than using EKF.
Keywords:UKF  EKF  tracking  estimation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号