首页 | 本学科首页   官方微博 | 高级检索  
     

一种求解动态多峰优化问题的Memetic粒子群算法
引用本文:王洪峰,王娜,汪定伟. 一种求解动态多峰优化问题的Memetic粒子群算法[J]. 系统工程理论与实践, 2013, 33(6): 1577-1586. DOI: 10.12011/1000-6788(2013)6-1577
作者姓名:王洪峰  王娜  汪定伟
作者单位:1. 东北大学 信息科学与工程学院, 沈阳 110819;2. 沈阳师范大学 计算机与数学基础教学部, 沈阳 110034
基金项目:国家自然科学基金(70931001, 71001018, 71071028); 中央高校基本科研业务费专项资金(N110404019, N110204005); 中国博士后科学基金(2012T50266)
摘    要:
很多现实的优化问题往往是动态和多峰的, 这就需要优化算法既能够发现尽可能多的最优解, 同时还要追踪到这些最优解在动态环境中的变化轨迹. 为了解决这种动态多峰优化问题, 本文提出了一种Memetic粒子群优化算法. 在提出的算法中, 利用一种新的species构造方法来保证其能够发现不同最优解所在搜索区域, 利用一种适应性的局域搜索算子来增强species追踪到最优解的能力, 利用重新初始化策略来进一步改善算法在动态多峰环境中的性能. 通过对一组标准动态测试函数--移动峰问题的仿真实验来检验所提出的 MPSO算法在求解动态多峰优化问题的有效性.

关 键 词:Memetic算法  粒子群优化算法  动态多峰优化问题  局域搜索  
收稿时间:2011-05-24

A Memetic particle swarm algorithm for dynamic multi-modal optimization problems
WANG Hong-feng , WANG Na , WANG Ding-wei. A Memetic particle swarm algorithm for dynamic multi-modal optimization problems[J]. Systems Engineering —Theory & Practice, 2013, 33(6): 1577-1586. DOI: 10.12011/1000-6788(2013)6-1577
Authors:WANG Hong-feng    WANG Na    WANG Ding-wei
Affiliation:1. School of Information Science and Engineering, Northeastern University, Shenyang 110819, China;2. Fundamental Teaching Department of Computer and Mathematics, Shenyang Normal University, Shenyang 110034, China
Abstract:
Many real-world optimization problems are both dynamic and multi-modal, which require an optimization algorithm not only to find as many as possible optima under a specific environment but also to track their trajectory over dynamic environments. To address this requirement, this paper investigates a memetic particle swarm algorithm for dynamic multi-modal optimization problems. Within the framework of the proposed algorithm, a new speciation method is employed to locate multiple peaks and an adaptive local search method is also hybridized to accelerate the exploitation of species generated by the speciation method. In addition, the re-initialization schemes are introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the memetic particle swarm algorithm in comparison with several state-of-the-art algorithms in the literature. The experimental results show the efficiency of our proposed algorithm for dynamic multi-modal optimization problems.
Keywords:Memetic algorithm  particle swarm optimization  dynamic multi-modal optimization problem  local search
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程理论与实践》浏览原始摘要信息
点击此处可从《系统工程理论与实践》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号